DOI QR코드

DOI QR Code

Focused Electron Beam-Controlled Graphene Field-Effect Transistor

  • Kim, Songkil (School of Mechanical Engineering, Pusan National University)
  • Received : 2020.07.27
  • Accepted : 2020.08.12
  • Published : 2020.09.01

Abstract

Focused electron beams with high energy acceleration are versatile probes. Focused electron beams can be used for high-resolution imaging and multi-mode nanofabrication, in combination with, molecular precursor delivery, in an electron microscopy environment. A high degree of control with atomic-to-microscale resolution, a focused electron beam allows for precise engineering of a graphene-based field-effect transistor (FET). In this study, the effect of electron irradiation on a graphene FET was systematically investigated. A separate evaluation of the electron beam induced transport properties at the graphene channel and the graphene-metal contacts was conducted. This provided on-demand strategies for tuning transfer characteristics of graphene FETs by focused electron beam irradiation.

Keywords

References

  1. J. Balakrishnan, G.K.W. Koon, M. Jaiswal, A.H.C. Neto, and B. Ozyilmaz, Nat. Phys., 9, 284 (2013). [DOI: https://doi.org/10.1038/nphys2576]
  2. J. D. Jones, K. K. Mahajan, W. H. Williams, P. A. Ecton, Y. Mo, and J. M. Perez, Carbon, 48, 2335 (2010). [DOI: https://doi.org/10.1016/j.carbon.2010.03.010]
  3. S. Kim, M. Russell, D. D. K ulkarni, M. Henry, S. Kim, R . R. Naik, A. A. Voevodin, S. S. Jang, V. V. Tsukruk, and A. G. Fedorov, ACS Nano, 10, 1042 (2016). [DOI: https://doi.org/10.1021/acsnano.5b06342]
  4. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666 (2004). [DOI: https://doi.org/10.1126/science.1102896]
  5. F. Withers, T. H. Bointon, M. Dubois, S. Russo, and M. F. Craciun, Nano Lett., 11, 3912 (2011). [DOI: https://doi.org/10.1021/nl2020697]
  6. J. T. Smith, A. D. Franklin, D. B. Farmer, and C. D. Dimitrakopoulos, ACS Nano, 7, 3661 (2013). [DOI: https://doi.org/10.1021/nn400671z]
  7. B. Cai, L. Huang, H. Zhang, Z. Sun, Z. Zhang, and G. J. Zhang, Biosens. Bioelectron., 74, 329 (2015). [DOI: https://doi.org/10.1016/j.bios.2015.06.068]
  8. P. Jangid, D. Pathan, and A. Kottantharayil, Carbon, 132, 65 (2018). [DOI: https://doi.org/10.1016/j.carbon.2018.02.030]
  9. L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, Science, 342, 614 (2013). [DOI: https://doi.org/10.1126/science.1244358]
  10. S. J. Randolph, J. D. Fowlkes, and P. D. Rack, Crit. Rev. Solid State Mater. Sci., 31, 55 (2006). [DOI: https://doi.org/10.1080/10408430600930438]
  11. F. J. Urbanos, A. Black, R. Bernardo-Gavito, A. L. Vazquez de Parga, R. Miranda, and D. Granados, Nanoscale, 11, 11152 (2019). [DOI: https://doi.org/10.1039/C9NR02464F]
  12. D. S. Fox, P. Maguire, Y. Zhou, C. Rodenburg, A. O'Neill1, J. N. Coleman, and H. Zhang, Nanotechnology, 27, 195302 (2016). [DOI: https://doi.org/10.1088/0957-4484/27/19/195302]
  13. O. Dyck, S. Kim, E. Jimenez-Izal, A. N. Alexandrova, S. V. Kalinin, and S. Jesse, Small, 14, 1801771 (2018). [DOI: https://doi.org/10.1002/smll.201801771]
  14. O. Dyck, S. Kim, S. V. Kalinin, and S. Jesse, Appl. Phys. Lett., 111, 113104 (2017). [DOI: https://doi.org/10.1063/1.4998599]
  15. M. Huth, F. Porrati, C. Schwalb, M. Winhold, R. Sachser, M. Dukic, J. Adams, and G. Fantner, Beilstein J. Nanotechnol., 3, 597 (2012). [DOI: https://doi.org/10.3762/bjnano.3.70]
  16. W. F. van Dorp, B. van Someren, C. W. Hagen, P. Kruit, and P. A. Crozier, Nano Lett., 5, 1303 (2005). [DOI: https://doi.org/10.1021/nl050522i]
  17. O. Dyck, S. Jesse, and S. V. Kalinin, MRS Bull., 44, 669 (2019). [DOI: https://doi.org/10.1557/mrs.2019.211]
  18. S. V. Kalinin, A. Borisevich, and S. Jesse, Nature, 539, 485 (2016). [DOI: https://doi.org/10.1038/539485a]
  19. Y. Zhou, J. Jadwiszczak, D. Keane, Y. Chen, D. Yu, and H. Zhang, Nanoscale, 9, 8657 (2017). [DOI: https://doi.org/10.1039/C7NR03446F]
  20. S. Kim, M. Russell, M. Henry, S. S. Kim, R. R. Naik, A. A. Voevodin, S. S. Jang, V. V. Tsukruk, and A. G. Fedorov, Nanoscale, 7, 14946 (2015). [DOI: https://doi.org/10.1039/C5NR04063A]
  21. A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. W. Magnuson, S. McDonnell, L. Colombo, E. M. Vogel, R. S. Ruoff, a nd R. M. Wallace, Appl. Phys. Lett., 99, 122108 (2011). [DOI: https://doi.org/10.1063/1.3643444]
  22. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, Nat. Nanotechnol., 3, 210 (2008). [DOI: https://doi.org/10.1038/nnano.2008.67]