• 제목/요약/키워드: Channel -flow

검색결과 2,827건 처리시간 0.025초

용융탄산염 연료전지 anode 유로 채널에서의 가스 유동 분포에 관한 수치해석적 연구 (Numerical analysis of the gas flow distribution characteristics in the anode flow channel of the molten carbonate fuel cell (MCFC))

  • 조준현;하태훈;김한상;민경덕;박종훈;장인갑;이태원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3120-3124
    • /
    • 2008
  • A three-dimensional computational fluid dynamics (CFD) analysis is performed to investigate flow characteristics in the anode channels and manifold of the internal reforming type molten carbonate fuel cell (MCFC). Considering the computational difficulties associated with the size and geometric complexity of the MCFC system, the polyhedral meshes that can reduce mesh connectivity problems at the intersection of the channel and the manifold are adopted and chemical reactions inside the MCFC system are not included. Through this study, the gas flow rate uniformity of the anode channels is mainly analyzed to provide basic insights into improved design parameters for anode flow channel design. Results indicate that the uniformity in flow-rate is in the range of ${\pm}1%$ between the anode channels. Also, the mal-distributed inlet flow-rate conditions and the change in the size of the manifold depth have no significant effect on the flow-rate uniformity of the anode channels.

  • PDF

LARGE EDDY SIMULATION OF TURBULENT CHANNEL FLOW USING ALGEBRAIC WALL MODEL

  • MALLIK, MUHAMMAD SAIFUL ISLAM;UDDIN, MD. ASHRAF
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제20권1호
    • /
    • pp.37-50
    • /
    • 2016
  • A large eddy simulation (LES) of a turbulent channel flow is performed by using the third order low-storage Runge-Kutta method in time and second order finite difference formulation in space with staggered grid at a Reynolds number, $Re_{\tau}=590$ based on the channel half width, ${\delta}$ and wall shear velocity, $u_{\tau}$. To reduce the calculation cost of LES, algebraic wall model (AWM) is applied to approximate the near-wall region. The computation is performed in a domain of $2{\pi}{\delta}{\times}2{\delta}{\times}{\pi}{\delta}$ with $32{\times}20{\times}32$ grid points. Standard Smagorinsky model is used for subgrid-scale (SGS) modeling. Essential turbulence statistics of the flow field are computed and compared with Direct Numerical Simulation (DNS) data and LES data using no wall model. Agreements as well as discrepancies are discussed. The flow structures in the computed flow field have also been discussed and compared with LES data using no wall model.

The Characteristics of Two-Phase Flow Distribution in a Bottom Dividing Header

  • Im, Yang-Bin;Kim, Jang-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권8호
    • /
    • pp.1195-1202
    • /
    • 2004
  • In this paper an experimental study was investigated for two-phase flow distribution in compact heat exchanger header. A test section was consisted of the horizontal bottom dividing header($\phi$: 5 mm, L: 80 mm) and 10 upward circular mini channels ($\phi$: 1.5 mm, L: 850 mm) using an acrylic tube. Three different types of tube intrusion depth were tested for the mass flux and inlet mass quality ranges of 50 - 200 kg/$m^2$s and 0.1 - 0.3, respectively. Air and water were used as the test fluids. The distribution of vapor and liquid is obtained by measurement of the total mass flow rate and the calculation of the quality. Two-phase flow pattern was observed, and pressure drop of each channel was measured. By adjusting the intrusion depth of each channel an uniform liquid flow distribution through the each channel was able to solve the mal-distribution problem.

The Effect of Buoyancy Orientation on Flow Structures in Turbulent Channel Flow using DNS

  • El-Samni Osama;Yoon HyunSik;Chun Ho Hwan
    • Journal of Ship and Ocean Technology
    • /
    • 제9권4호
    • /
    • pp.1-10
    • /
    • 2005
  • The effect of buoyancy orientation on turbulent channel flow has been investigated using DNS (direct numerical simulation). Grashof number is kept at 9.6 $\times 10^{5}$ while changing the orientation of the buoyancy vector to be parallel or perpendicular to the channel walls. Four study cases can be distinguished during this research namely; streamwise, wall-normal unstable stratification, wall-normal stable stratification and spanwise oriented buoyancy. The driving mean pressure gradient used in all cases is adjusted to keep mass flow rate constant while friction Reynolds number is around 150. At this Grashof number, the skin friction shows decrement in the unstable and stable stratification and increment in the other two cases. Analyses of the changes of flow structure for the four cases are presented highlighting on the mean quantities and second order statistics.

Open-channel discharges evaluation by the application of smart sensors

  • Khatatbeh, Arwa;Kim, Young-Oh
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.138-138
    • /
    • 2022
  • Understanding a stream's or river's discharge is essential for a variety of hydrological and geomorphological applications at various sizes. However, depending on the stream environment and flow conditions, it is crucial to use the appropriate techniques and instruments. This will ensure that discharge estimations are as reliable as possible. This study presents developed smart system for continuous measurement of open channel discharge and evaluate streamflow measurement over various techniques. This includes developed smart flow meter as flow point measurements, smart water level sensor (installed on Hydraulic Structure ? Weir) and current meters. Advantages and disadvantages of each equipment are presented to ensure that the most appropriate method can be selected. we found that smart water level sensor is more prominent once used during flood event as compared to smart flow meter and current meters, while current meters seems to show better accuracy once applied for open channel.

  • PDF

채널 형상에 따른 마이크로채널 PCHE의 열전달 및 압력강하 특성 (The Heat Transfer and Pressure Drop Characteristics on Microchannel PCHE with various Configurations)

  • 김윤호;문정은;이규정
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.215-220
    • /
    • 2008
  • A microchannel PCHE is manufactured by the two technologies of micro photo-etching and diffusion bonding. In this paper, heat transfer and pressure drop characteristics by applying various configuration for the flow channel in the microchannel PCHE is experimentally investigated. The flow channel configurations are designed three types such as straight, wavy and offset strip channels. The performance experiment of each configuration is performed for Reynolds numbers in ranges of $100{\sim}700$ under various flow conditions for the hot side and the Reynolds number of cold side is fixed at 350. The inlet temperatures of the hot side and cold side are conducted as $40^{\circ}C$ and $20^{\circ}C$, respectively. The heat transfer performance of wavy channel, which was similar to that of offset strip channel, was much higher than that of straight channel. The effectiveness of wavy channel and offset strip channel was evaluated as about $0.5{\sim}0.9$. The pressure drop of wavy channel was highest among configurations and that of offset strip channel was lower than that of straight channel because the round curved surface of each strip edge was reduced the pressure loss.

  • PDF

레이놀즈 수의 시간 증가율에 따른 난류 채널유동의 변화 (Effects of the Temporal Increase Rate of Reynolds Number on Turbulent Channel Flows)

  • 정서윤;김경연
    • 대한기계학회논문집B
    • /
    • 제40권7호
    • /
    • pp.435-440
    • /
    • 2016
  • 레이놀즈 수의 시간 증가율이 벽면난류 구조에 미치는 영향을 난류 채널유동에 대한 직접수치모사를 수행하여 조사하였다. 완전 발달된 $Re_{\tau}=180$의 난류 채널유동이 가속을 받게 되어 평균속도로 무차원화된 레이놀즈 수가 5600에서 13600까지 선형적으로 변화하게 된다. 다양한 가속 시간에 대한 계산을 수행하여 벽면난류에 대한 가속율의 효과를 파악하였다. 유량의 증가율이 큰 경우에는 우회 천이와 유사한 현상이 발견되었으며, 유량의 증가율이 낮은 경우에는 우회 천이 현상이 거의 나타나지 않았다. 본 연구 결과는 초기 레이놀즈 수와 최종 레이놀즈 수의 비 보다는 레이놀즈 수의 시간 증가율이 채널 내 과도유동에서의 우회 천이 현상 발생에 주요인자 임을 제시한다.

마이크로 채널 충전 과정의 유동 현상 (II) - 수치 해석 - (Flow Phenomena in Micro-channel Filling Process (II) - Numerical Analysis -)

  • 김동성;이광철;권태헌;이승섭
    • 대한기계학회논문집A
    • /
    • 제27권5호
    • /
    • pp.657-665
    • /
    • 2003
  • Several interesting results were obtained from the flow visualization experiment in the accompanying paper, Part I. in the present study, Part II, a numerical study has been carried out to explain the detailed flow phenomena in micro-channel filling process. Hele-Shaw flow approximation was applied to the micro-channel geometry based on the small characteristic length. And surface tension effect has been introduced on the flow front as the boundary condition with the help of a dynamic contact angle concept between the melt front and the wall. A dimensional analysis for numerical results was carried out and a strong relationship between dimensionless pressure and Capillary number is obtained. The numerical analysis results are compared with the flow visualization experimental observations. And the numerical system developed in the present study seems to be able to predict the interesting micro-channel filling flow characteristics observed from experiments.

왕복 유동을 통한 확산증대 효과가 연료전지 성능에 미치는 영향에 대한 수치해석 (Numerical Simulation of the Oscillating Flow Effect in the Channel of Polymer Electrolyte Membrane Fuel Cell)

  • 김종민;강경식
    • 대한안전경영과학회지
    • /
    • 제20권4호
    • /
    • pp.7-13
    • /
    • 2018
  • This study investigates the enhancement of the oxygen diffusion rate in the cathode channel of a proton exchange membrane fuel cell (PEMFC) by pure oscillating flow, which is the same as the mechanism of human breathe. Three-dimensional numerical simulation, which has the full model of the fuel cell including electrochemical reaction, ion and electronic conduction, mass transfer and thermal variation and so on, is performed to show the phenomena in the channel at the case of a steady state. This model could analysis the oscillating flow as a moving mesh calculation coupled with electrochemical reaction on the catalyst layer, however, it needs a lot of calculation time for each case. The two dimensional numerical simulation has carried on for the study of oscillating flow effect in the cathode channel of PEMFC in order to reduce the calculation time. This study shows the diffusion rate of the oxygen increased and the emission rate of the water vapor increased in the channel by oscillating flow without any forced flow.

곡유로내 물의 층류유동에서 곡부가 결빙에 미치는 영향 (Effects of the Curvature on the Freezing Phenomena of a Laminar Water Flow in a Curved Channel)

  • 서정세
    • 대한기계학회논문집B
    • /
    • 제24권11호
    • /
    • pp.1497-1505
    • /
    • 2000
  • A numerical study is made on the ice-formation for a laminar flow in a curved channel. When the water flows through the curved channel with the walls specified below the freezing temperature, the ice layer has been formed on the curved surface, different from that of a straight channel. The fluctuation of ice layer has been predicted, considering the variation of velocity and temperature near the curved portion of channel. The study also takes into account the interaction existing between the laminar flow and the curved channel. In the solution strategy, the present study is substantially different from the existing works in that the complete set of governing equations in both the solid and liquid regions are resolved. The results from this study have been mainly presented, focusing on the variation of ice layer close to the curved portion. Numerical results have been obtained parametrically by varying the curved angle and the radius of curvature of channel, in addition to the variation of Reynolds numbers and wall temperatures of channel. The results show that the curved shape of channel has the great effect on the thickness of the solidification layer. The wave of ice layer thickness appears in the vicinity of curved portion. This behavior of ice layer has been amplified as is the increasing of curved angle and the radius of curvature of channel. In addition, the ice layer becomes thin as Reynolds numbers in increasing. And also, as the wall temperature of channel increases, the width of channel becomes to be shrunk due to the growth of ice layers in the upper and lower wall of channel.