• Title/Summary/Keyword: Changma period

Search Result 37, Processing Time 0.025 seconds

Decadal Change in Rainfall During the Changma Period in Early-2000s (2000년대 초반 우리나라 장마기간 강수량의 십년 변화 특성)

  • Woo, Sung-Ho;Yim, So-Young;Kwon, Min-Ho;Kim, Dong-Joon
    • Atmosphere
    • /
    • v.27 no.3
    • /
    • pp.345-358
    • /
    • 2017
  • The decadal change in rainfall for Changma period over the South Korea in early-2000s is detected in this study. The Changma rainfall in P1 (1992~2002) decade is remarkably less than in P2 (2003~2013) decade. The much rainfall in P2 decade is associated with the increase of rainy day frequency during Changma period, including the frequent occurrences of rainy day with a intensity of 30 mm/day or more in P2 decade. This decadal change in the Changma rainfall is due to the decadal change of atmospheric circulation around the Korean Peninsula which affects the intensity and location of Changma rainfall. During P2 decade, the anomalous anti-cyclone over the south of the Korean Peninsula, which represents the expansion of the North Pacific high with warm and wet air mass toward East Asia, is stronger than in P1 decade. In addition, the upper level zonal wind and meridional gradient of low-level equivalent potential temperature in P2 decade is relatively strengthened over the northern part of the Korean Peninsula than in P1 decade, which corresponds with the intensification of meridional gradient between air mass related to the East Asian summer monsoon nearby the Korean Peninsula in P2 decade. The enhanced meridional gradient of atir mass during P2 decade is favorable condition for the intensification of Changma rainfall band and more Changma rainfall. The atmospheric conditions related to enhanced Changma rainfall during P2 decade is likely to be influenced by the teleconnection linked to the suppressed convection anomaly over the southern part of China and South China Sea in P2 decade.

Change of Synoptic Climatology Associated with the Variation of Summer Rainfall Amount over the Korean Peninsula Around 1993/1994 (1993/1994년을 기점으로 나타난 한반도 여름철 강수량 변동의 종관기후학적 원인)

  • Kim, Jae-Hoon;Lee, Tae-Young
    • Atmosphere
    • /
    • v.22 no.4
    • /
    • pp.401-413
    • /
    • 2012
  • In this study, an investigation has been carried out to understand 1) temporal variation of rainfall amount in summer over south Korea during the 30-year period of 1979-2008 and 2) the relationship between the variation of rainfall amount and the change of large-scale monsoon circulation around 1993/1994 over East Asia. The analysis of rainfall amount is carried out separately for whole summer (June-August), climatological Changma period of 23 June-23 July, and August to consider variations within summer. To relate the variation of rainfall amount with the change of large-scale circulation, we have considered two 15-year periods of 1979-1993 and 1994-2008. This study has used observations at 58 stations in South Korea and NCEP-NCAR $2.5^{\circ}{\times}2.5^{\circ}$ reanalysis data. The major change in synoptic environment for the Changma period is characterized by the intensified anticyclone over Mongolia during 1994-2008, which results in a weak meridional oscillation of Changma front. As a result, rainfall amount for the Changma period and the frequency of extreme events have significantly increased after 1993/1994. A major change of synoptic environment for August is the significant westward extension of the western Pacific subtropical high, which allows not only more moisture transports but also stronger cyclonic circulation over the Korean peninsula. Rainfall amount for August and frequency of extreme events have also increased after 1993/1994. However, variability of rainfall amount is larger for August than that for the Changma period, with some years showing very dry August (monthly rainfall amount less than 150 mm).

What means Changma in KOREA? (우리나라 장마에 대한 소고)

  • Ryoo, Sang-Boom;Oh, Jai-Ho;Lee, Jin-Suk;Lee, Kyoung-Min
    • The Korean Journal of Quaternary Research
    • /
    • v.19 no.1
    • /
    • pp.18-26
    • /
    • 2005
  • The East Asian summermonsoon is generally accompanied with the quasi-stationary front along the northern and northwestern periphery of the subtropical Northwest Pacific high. The rainy season in Korea has been called as Changma since the middle of 1500s. Understanding of Changma and heavy rainfall advancing along the Changma front is one of main interesting of Korean meteorologists. This study briefly summarized the descriptive characteristics of Changma and its relatedmechanism, definitions on the Changma period, and etymology of Changma through reviewing the previous studies on Changma.

  • PDF

Analysis of Characteristics for 2016 Changma Rainfall (2016년 한반도 장마 강수 특성 분석)

  • Kim, Jin-Yong;Seo, Kyong-Hwan;Yeh, Sang-Wook;Kim, Hyun-Kyung;Yim, So-Young;Lee, Hyun-Soo;Kown, MinHo;Ham, Yoo-Geun
    • Atmosphere
    • /
    • v.27 no.3
    • /
    • pp.277-290
    • /
    • 2017
  • Characteristics of precipitation in South Korea during the 2016 Changma period (6/18~7/30) are analyzed in great details. El $Ni{\tilde{n}}o$-induced tropical Indian Ocean (IO) basin-wide warming lasts from spring to early summer and induces the western North Pacific subtropical high (WNPSH) circulation anomaly through an equatorial Kelvin wave during the 2016 Changma period. Along the northern edge of the WNPSH, strong precipitation occurred, in particular, over eastern China and southern Japan. During the Changma period, South Korea had the near-normal mean precipitation amount (~332 mm). However, about 226 mm of rain fell in South Korea during 1 July to 6 July, which amounts to 67% of total Changma precipitation in that year. Upper-level synoptic migratory lows and low-level moisture transport played an essential role, especially from 1 July to 3 July, in triggering an abrupt development of fronts over the Korean Peninsula and the eastern continent China. The front over the eastern China migrates progressively eastward, which results in heavy rainfall over the Korean peninsula from 1 to 3 July. In contrast, from 4 to 6 July, the typhoon (NEPARTAK) affected an abrupt northward advance of the North Pacific subtropical high (NPSH). The northward extension of the NPSH strengthens the Changma front and induces the southerly flows toward the Korean peninsula, giving rise to an increase in heavy rainfall. The NEPARTAK is generated due to interaction of the Madden-Julian Oscillation (MJO), equatorial Rossby wave and Kelvin waves.

Recent Changes in Summer Precipitation Characteristics over South Korea (최근 한반도 여름철 강수특성의 변화)

  • Park, Chang-Yong;Moon, Ja-Yeon;Cha, Eun-Jeong;Yun, Won-Tae;Choi, Young-Eun
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.3
    • /
    • pp.324-336
    • /
    • 2008
  • This paper examines the recent changes of summer precipitation in the aspect of temporal and spatial features using long-term($1958{\sim}2007$) observed station data over South Korea. tong-term mean summer precipitation has revealed two precipitation peaks during summer(June to September); one is the Changma as the first peak, and the other is the post-Changma as the second peak. During the Changma period, the spatial distribution of the maximum precipitation areas is determined by the prevailing southwesterlies and the quasi-stationary front, which results in large amount of precipitation at the windward side of mountain regions over South Korea. However during the post-Changma period, the spatial distribution of the maximum precipitation areas is determined by the lower tropospheric circulation flows from the west and the southeast around the Korean peninsula, and the weather phenomena such as Typhoons, convective instability, and cyclones which are originated from the Yangtze river. The larger amount of precipitation is founded on the southern coastal region and mountain and coastal areas in Korea during the second peak. Time series of total summer precipitation shows a steady increase and the increasing trend is more obvious during the recent 10 years. Decadal variation in summer precipitation indicates a large increase of precipitation, especially in the recent 10 years both in the Changma and the post-Changma period. However, the magnitude of change and the period of the maximum peak presents remarkable contrasts among stations. The most distinct decadal change occurs at Seoul, Busan, and Gangnueng. The precipitation amount is increasing significantly during the post-Changma period at Gangnueng, while the precipitation increases in the period between two maximum precipitation peaks during summer at Seoul and Busan.

The Weather Representativeness in Changma Period Established by the Weather Entropy and Information Ratio - Focused on Seoul, Taegu, Gwangju, Chungju, Puyo - (일기엔트로피 및 정보비에 의한 장마기의 일기대표성 설정 - 서울, 대구, 광주, 충주, 부여를 중심으로 -)

  • 박현욱;문병채
    • Journal of Environmental Science International
    • /
    • v.12 no.4
    • /
    • pp.399-417
    • /
    • 2003
  • The seasonal variation and frequency of rainfalls of Korea peninsula in Changma period show strong local weather phenomenon because of it's topographical and geographical factors in Northeast side of Asia. Based on weather entropy(statistical parameter)-the amount of average weather information-and information ratio, we can define each area's weather representativeness, which can show us more constant form included topographical and geographical factors and seasonal variation. The data used for this study are the daily precipitation and cloudiness during the recent ten years(1990-1999) at the 73 stations in Korea. To synthesize weather Entropy, information ratio of decaying tendency and half$.$decay distance, Seoul's weather representativeness has the smallest in Summer Changma period. And Puyo has the largest value in September.

The Analysis of Changma Structure Using Radiosonde Observational Data from KEOP-2007: Part II. The Dynamic and Thermodynamic Characteristics of Changma in 2007 (KEOP-2007 라디오존데 관측자료를 이용한 장마 특성 분석 : Part Ⅱ. 2007년 장마의 역학적 및 열역학적 특성에 관한 사례연구)

  • Kim, Ki-Hoon;Kim, Yeon-Hee;Jang, Dong-Eon
    • Atmosphere
    • /
    • v.19 no.4
    • /
    • pp.297-307
    • /
    • 2009
  • The synoptic structures and the dynamic and thermodynamic characteristics of Changma in 2007 are investigated using the ECMWF analysis data and the radiosonde data from KEOP-2007 IOP. The enhancement of the North-Pacific High into the Korean peninsula and the retreat of the Okhotsk High are shown during the onset of Changma and the change of wind component from southwesterly to northwesterly is appeared during the end of Changma. The baroclinic atmosphere is dominant during Changma at most regions over the Korean peninsula except at Gosan and Sokcho. The quasi-barotropic atmosphere is induced at Gosan by warm air mass and Sokcho by cold air mass. Precipitation in the Korean peninsula occurs when dynamic instability is strengthened as the baroclinic and qusi-barotropic structure is weakened. An empirical orthogonal function (EOF) analysis is performed to find the dominant modes of variability in Changma. The first EOF explains the onset of Changma. The second EOF is related to the discrimination for existence and nonexistence of precipitation during Changma period according to the alternation of equivalent potential temperature between middle and lower atmosphere.

Analysis for Onset of Changma Using Ieodo Ocean Research Station Data (이어도 기상 관측 자료를 활용한 장마 시작일 분석)

  • Oh, Hyoeun;Ha, Kyung-Ja;Shim, Jae-Seol
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.189-196
    • /
    • 2014
  • The definition of onset date of Changma is revisited in this study using a quality controlled Ieodo ocean research station data. The Ieodo station has great importance in terms of its southwest location from Korean Peninsula and, hence, makes it possible to predict Changma period in advance with less impact of continents. The onset date of Changma using the Ieodo station data is defined by the time that meridional wind direction changes and maintains from northerly to southerly, and then the zonal wind changes from easterly to westerly after first June. This definition comes from a recognition that the establishment and movement of the western North Pacific subtropical high (WNPSH) cause Changma through southwesterly flow. The onset data of Changma has been determined by large-scale dynamic-thermodynamic characteristics or various meteorological station data. However, even the definition based on circulation data at the Ieodo station has a potential for the improved prediction skill of the onset date of Changma. The differences between before and after Changma, defined as Ieodo station data, are also found in synoptic chart. The convective instability and conspicuous circulations, corresponding low-level southwesterly flow related to WNPSH and strong upper-level zonal wind, are represented during Changma.

Changes in Means and Extreme Events of Changma-Period Precipitation Since mid-Joseon Dynasty in Seoul, Korea (조선 중기 이후 서울의 장마철 강수 평균과 극한강수현상의 변화)

  • Choi, Gwangyong
    • Journal of the Korean Geographical Society
    • /
    • v.51 no.1
    • /
    • pp.23-40
    • /
    • 2016
  • In this study, long-term changes in means and extreme events of precipitation during summer rainy period called Changma (late June~early September) are examined based on rainfall data observed by Chukwooki during Joseon Dynasty (1777~1907) and by modern rain-gauge onward (1908~2015) in Seoul, Korea. Also, characterizations of the relevant changes in synoptic climate fields in East Asia are made by the examination of the NCEP-NCAR reanalysis I data. Analyses of 239-year time series of precipitation data demonstrate that the total precipitation as well as their inter-annual variability during the entire Changma period (late June~early September) has increased in the late 20th century and onward. Notably, since the early 1990s the means and extreme events during the summer Changma period (late June~mid-July) and Changma break period (late July~early August) has significantly increased, resulting in less clear demarcations of sub-Changma periods. In this regard, comparisons of synoptic climate fields before and after the early 1990s reveal that in recent decades the subtropical high pressure has expanded in the warmer Pacific as the advection of high-latitude air masses toward East Asia was enhanced due to more active northerly wind vector around the high pressure departure core over Mongolia. Consequently, it is suggested that the enhancement of rising motions due to more active confluence of the two different air masses along the northwestern borders of the Pacific might lead to the increases of the means and extreme events of Changma precipitation in Seoul in recent decades.

  • PDF

Spatial and Temporal Characteristics of Summer Extreme Precipitation Events in the Republic of Korea, 2002~2011 (우리나라 여름철 극한강수현상의 시·공간적 특성(2002~2011년))

  • Lee, Seung-Wook;Choi, Gwangyong;Kim, Baek-Jo
    • Journal of the Korean association of regional geographers
    • /
    • v.20 no.4
    • /
    • pp.393-408
    • /
    • 2014
  • In this study, the spatio-temporal characteristics of summer extreme precipitation events in the Republic of Korea are examined based on the daily precipitation data observed at approximately 360 sites of both Automatic Weather Station (AWS) and Automated Synoptic Observation System (ASOS) networks by the Korea Meteorological Administration for the recent decade(2002~2011). During the summer Changma period(late June~mid July), both the frequency of extreme precipitation events exceeding 80mm of daily precipitation and their decadal maximum values are greatest at most of weather stations. In contrast, during the Changma pause period (late July~early August), these patterns are observed only in the northern regions of Geyeonggi province and western Kangwon province as such patterns are detected around Mt. Sobaek and Mt. Halla as well as in the southern regions of Geyeonggi province and western Kangwon province during the late Changma period (mid August~early September) due to north-south oscillation of the Changma front. Investigation of their regional patterns confirms that not only migration of the Changma front but also topological components in response to the advection of moistures such as elevation and aspect of major mountain ridges are detrimental to spatio-temporal patterns of extreme precipitation events. These results indicate that each local administration needs differentiated strategies to mitigate the potential damages by extreme precipitation events due to the spatiotemporal heterogeneity of their frequency and intensity during each Changma period.

  • PDF