• Title/Summary/Keyword: Changma index

Search Result 11, Processing Time 0.02 seconds

Changma Onset and Withdrawal Prediction Skill Using Korean Integrated Model (KIM): Focused on the Case Study of 2021 Changma (한국형앙상블모델(KIM)의 장마 시종일 예측성능 진단: 2021년 장마사례를 중심으로)

  • Ju Heon Kim;Ji-Han Sim;Baek-Min Kim
    • Atmosphere
    • /
    • v.34 no.4
    • /
    • pp.349-358
    • /
    • 2024
  • The accurate prediction of Changma (Korean summer monsoon) onset and withdrawal dates is crucial for various sectors including agriculture, water resource management, and disaster prevention. This study applies 25 ensemble members from the operational Korean Integrated Model (KIM) to the Korea Meteorological Administration (KMA) Changma Index (CMI) to diagnose the forecast skill for the onset and withdrawal dates of the 2021 Changma, which marked as the third shortest period on record. The CMI, consisting of 200 hPa geopotential height and zonal wind variables around the Korean Peninsula, was used to compare reanalysis data and KIM's ensemble forecast data. While the CMI from individual ensemble members showed significant variability in predicting the Changma onset and withdrawal dates, the ensemble mean CMI accurately predicted the Changma onset date 12 days in advance with a one-day error margin, and also accurately predicted the Changma withdrawal date 9 days in advance. Detailed analysis of the variables constituting the CMI in KIM's ensemble forecast data indicated that variations in the 200 hPa geopotential height were particularly influential in determining the Changma onset and withdrawal dates. These results demonstrate that the ensemble mean forecast of KIM is more effective than individual ensemble member forecasts for predicting Changma onset and withdrawal dates, highlights the utility of KIM's ensemble forecast data and the effectiveness of using upper atmospheric variables (specifically 200 hPa geopotential height) for these predictions.

Structure of Mesoscale Heavy Precipitation Systems Originated from the Changma Front (장마전선 상에서 발생한 중규모 호우계 구조에 대한 연구)

  • Park, Chang-Geun;Lee, Tae-Young
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.317-338
    • /
    • 2008
  • Analyses of observational data and numerical simulations were performed to understand the mechanism of MCSs (Mesoscale Convective Systems) occurred on 13-14 July 2004 over Jindo area of the Korean Peninsula. Observations indicated that synoptic environment was favorable for the occurrence of heavy rainfall. This heavy rainfall appeared to have been enhanced by convergence around the Changma front and synoptic scale lifting. From the analyses of storm environment using Haenam upper-air observation data, it was confirmed that strong convective instability was present around the Jindo area. Instability indices such as K-index, SSI-index showed favorable condition for strong convection. In addition, warm advection in the lower troposphere and cold advection in the middle troposphere were detected from wind profiler data. The size of storm, that produced heavy rainfall over Jindo area, was smaller than $50{\times}50km^2$ according to radar observation. The storm developed more than 10 km in height, but high reflectivity (rain rate 30 mm/hr) was limited under 6 km. It can be judged that convection cells, which form cloud clusters, occurred on the inflow area of the Changma front. In numerical simulation, high CAPE (Convective Available Potential Energy) was found in the southwest of the Korean Peninsula. However, heavy rainfall was restricted to the Jindo area with high CIN (Convective INhibition) and high CAPE. From the observations of vertical drop size distribution from MRR (Micro Rain Radar) and the analyses of numerically simulated hydrometeors such as graupel etc., it can be inferred that melted graupels enhanced collision and coalescence process of heavy precipitation systems.

The Synoptic Characteristics of Heavy Rain in South Korea (한반도 집중호우의 종관적 특성)

  • Jeong, Goan-Young;Ryu, Chan-Su
    • Journal of Integrative Natural Science
    • /
    • v.1 no.2
    • /
    • pp.89-114
    • /
    • 2008
  • Interrelationship between heavy rainfalls and related with low-level jets(LLJ) is analyzed by using fifty cases of heavy rainfall events occurred over the Korean peninsula from 1992 to 2001. Those cases are classified with four synoptical features. There are 32% chances that the low pressure exist in heavy rainfall over than 150 mm per day case by case. Secondly Changma front and front zone account for 28% of all cases. The ratio of marine tropical boundary type and trough type record 22% and 18% respectively. The moist and warm south-westerly winds associated with low-level jets have been induced convective instability and baroclinic instability. Therefore, heavy rainfall due to the approach of a low pressure occurred at September and before Changma. During the period of Changma, this type has been happened heavy rainfall when low pressure and stationary front has vibrated south and north. Changma type has longer the duration time of precipitation than other types. Third type, located with marine Tropical boundary, have mainly rained in August and September. The last trough case locally downpoured in short time with developing cell. The occurrence low-level jets related to heavy rainfall has increased over 12.5 m/s wind speed. The result is that 43 heavy rainfalls out of 50 cases reach peak at the time of maximum precipitation intensity. Also, the variation of wet number and K-index corresponded with the variation of wind speed. It is found that the number of frequency of low-level jets with southwestward direction has been increased and these jets are mainly passed from the southwest toward to the northeast of the Korean peninsula in that time.

  • PDF

A Study on the Coherence of the Precipitation Simulated by the WRF Model during a Changma Period in 2005 (WRF 모델에서 모의된 2005년 장마 기간 강수의 동조성 연구)

  • Byon, Jae-Young;Won, Hye-Young;Cho, Chun-Ho;Choi, Young-Jean
    • Atmosphere
    • /
    • v.17 no.2
    • /
    • pp.115-123
    • /
    • 2007
  • The present study uses the GOES IR brightness temperature to examine the temporal and spatial variability of cloud activity over the region $25^{\circ}N-45^{\circ}N$, $105^{\circ}E-135^{\circ}E$ and analyzes the coherence of eastern Asian summer season rainfall in Weather Research and Forecast (WRF) model. Time-longitude diagram of the time period from June to July 2005 shows a signal of eastward propagation in the WRF model and convective index derived from GOES IR data. The rain streaks in time-latitude diagram reveal coherence during the experiment period. Diurnal and synoptic scales are evident in the power spectrum of the time series of convective index and WRF rainfall. The diurnal cycle of early morning rainfall in the WRF model agrees with GOES IR data in the Korean Peninsula, but the afternoon convection observed by satellite observation in China is not consistent with the WRF rainfall which is represented at the dawn. Although there are errors in strength and timing of convection, the model predicts a coherent tendency of rainfall occurrence during summer season.

An Economic Value for the First Precipitation Event during Changma Period (장마철 첫 강수의 경제적 가치)

  • Seo, Kyong-Hwan;Choi, Jin-Ho
    • Atmosphere
    • /
    • v.32 no.1
    • /
    • pp.61-70
    • /
    • 2022
  • This study evaluates the economic values for the several first precipitation events during Changma period. The selected three years are 2015, 2019, and 2020, where average precipitation amounts across the 58 Korean stations are 12.8, 20.1 and 13.3 mm, respectively. The four categories are used to assess the values including air quality improvement, water resource acquisition/accumulation, drought mitigation, and forest fire prevention/recovery. Economic values for these three years are estimated 50~150 billion won. Among the four factors considered, the effect of air quality improvement is most highly valued, amounting to 70 to 90% of the total economic values. Wet decomposition of air pollution (PM10, NO2, CO, and SO2) is the primary reason. The next valuable element is water resource acquisition, which is estimated 9~15 billion won. Effects of drought mitigation and fire prevention are deemed relatively small. This study is the first to estimate the value of the precipitation events during Changma onset. An analysis for more Changma years will be performed to achieve a more reliable estimate.

Lag-correlation of Korean Drought in East Asia (한반도 가뭄의 동아시아 내에서의 지연상관)

  • Jun, Kap Young;Byun, Hi-Ryong;Kim, Do-Woo
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.249-266
    • /
    • 2008
  • The tendencies for teleconnection with a time lag and other characteristics of Korean summer droughts have been investigated and some clues to predict the drought occurrences several months before have been found. First, the May and June droughts in Korea are simultaneous with those over the northwestern part of Korea owing to the relation with the baroclinic wave. However, the July and August droughts occur over the mid-latitudes or southern part of Korea owing to the relation with the Changma front. Second, several months before the MJJA droughts in Korea, it is found that the effective drought index (EDI) over particular areas (hereafter, referred to as the omen areas) is large. Thailand, Carolina Island, Mongolia, and Central Bengal Bay were selected as the omen areas. Third, when the monthly minimum EDI (MME) of the omen area in winter is more than 0.7, it signifies that the precipitation is above normal, Korea has almost always experienced a summer drought. However, the droughts occurring with this type of relationship only represent half of the MJJA droughts in Korea. Fourth, the relationships between the Korean drought and the precipitation over omen areas in low latitudes are not valid over all the eight precipitation areas in Korea, but only over Areas I, II, and III, where heavy rains occur during spring and summer.

The Climatology of Perceived Sultriness in South Korea (남한의 체감 무더위의 기후학)

  • 최광용;최종남;김종욱;손석우
    • Journal of the Korean Geographical Society
    • /
    • v.37 no.4
    • /
    • pp.385-402
    • /
    • 2002
  • This study examined temporal and spatial patterns of bioclimatic perceived sultriness in South Korea by analyzing the climatology of heat index calculated from ambient temperature and relative humidity for the period of 26 years (1973-1998). As results, spatially, bioclimatic sultriness above all thresholds frequently occurred mainly in the central western inner area, the southwestern inner area, and the southeastern inner area of South Korea. Especially, Miryang in the southeastern inner area of South Korea was proved to be, bioclimatically, the sultriest area in South Korea that has recorded frequent high heat index. Temporally, frequency of sultriness in the contiguous South Korea significantly increased in the 1990s. Specifically, In 1994, frequencies of heat index exceeding each threshold was the highest all over South Korea. Normally, the sultriness with high heat index exceeding 40.6$^{circ}C$ occurred mainly for the period of between the end of July generally after Summer Changma and the beginning of August before another small rainy season of years. These temporal-spatial distributions of bioclimatic sultriness in South Korea showed various patterns regionally, affected by physical and anthropogenic climatic factors such as topography, latitude, altitude, water bodies or aforestration, urbanization, and industrialization as well as movements of large-scale air masses.

A Variation of Summer Rainfall in Korea (한국의 여름철 강수량 변동 - 순별 강수량을 중심으로 -)

  • Lee Seungho;Kwon Won Tae
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.6 s.105
    • /
    • pp.819-832
    • /
    • 2004
  • Daily rainfall data from 14 stations during 1941 to 2000 were analyzed in order to examine the characteristics of the variation of summer rainfall and the identify relationship between the variation of summer rainfall and the variation of SOI(Southern Oscillation Index) and NPI(North Pacific Index), global temperature. For further investigation, study period is divided into two 30 year intervals, 1941-1970 and 1971-2000. There are the trend of increase in August and decrease in September in the later period compared with the earlier one. It was Mid-west in August where there is the largest variation. It is related to the increase of the frequency of heavy rainfall. The second period of extreme rainfall by ten days is absent, or it change from early in September to late in August. According to the result, the dry spell in August disappears and Changma is continued to early in September. Gradually, there is change from negative (or positive) to positive (or negative) to the rainfall anomaly of the mid of August and the mid of September (or July). The correlation between the variation of rainfall and oceanic variation and global temperature is statistically significant.

Synoptic Climatological Characteristics of Distribution of Precipitation in Korea in Early Autumn (한국의 초가을 강수분포의 종관기후학적 특성)

  • Yang, Jin-Suk
    • Journal of the Korean association of regional geographers
    • /
    • v.5 no.1
    • /
    • pp.151-162
    • /
    • 1999
  • This study is a comparative analysis of sea level and 500hPa surfaces between dry year and wet year, which are selected by variability of precipitation and standardized anomalies in Korea in early autumn. While the amount of precipitation of early autumn decreases, the variability of precipitation increases rapidly reflecting the strength and weakness of Kaul Changma front and the occurrences of the typhoonic precipitation. The regional distribution of the variability of precipitation shows west-high, east-low pattern in which the east coast and the southeastern coast shows low, but high in the southwestern coast. In the anomalies distribution of sea-level and 500hPa surfaces, during dry year, the northern part of Siberia and the core area of North Pacific high shows negative anomalies, on the contrary, there were positive anomalies in wet year at the same areas. In addition, at the 500hPa level, while the Korean peninsula was located at the west of deep trough with low zonal index in dry year, the peninsula was influenced by weak trough with high zonal index showing strong zonal flow in wet year. During dry year the height of 500hPa surface is low at the north of $40^{\circ}N$, but high in wet year. In consequences, this study identified that the occurrences of dry year and wet year were influenced by the seasonal variations of the strength and the weakness of North Pacific high and Siberian high.

  • PDF

Observing System Experiments Using the Intensive Observation Data during KEOP-2005 (KEOP-2005 집중관측자료를 이용한 관측시스템 실험 연구)

  • Won, Hye Young;Park, Chang-Geun;Kim, Yeon-Hee;Lee, Hee-Sang;Cho, Chun-Ho
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.299-316
    • /
    • 2008
  • The intensive upper-air observation network was organized over southwestern region of the Korean Peninsula during the Korea Enhanced Observing Program in 2005 (KEOP-2005). In order to examine the effect of additional upper-air observation on the numerical weather forecasting, three Observing System Experiments (OSEs) using Korea Local Analysis and Prediction System (KLAPS) and Weather Research and Forecasting (WRF) model with KEOP-2005 data are conducted. Cold start case with KEOP-2005 data presents a remarkable predictability difference with only conventional observation data in the downstream and along the Changma front area. The sensitivity of the predictability tends to decrease under the stable atmosphere. Our results indicates that the effect of intensive observation plays a role in the forecasting of the sensitive area in the numerical model, especially under the unstable atmospheric conditions. When the intensive upper-air observation data (KEOP-2005 data) are included in the OSEs, the predictability of precipitation is partially improved. Especially, when KEOP-2005 data are assimilated at 6-hour interval, the predictability on the heavy rainfall showing higher Critical Success Index (CSI) is highly improved. Therefore it is found that KEOP-2005 data play an important role in improving the position and intensity of the simulated precipitation system.