• Title/Summary/Keyword: Changes in vegetation

Search Result 677, Processing Time 0.028 seconds

Monitoring Vegetation Structure Changes in Urban Wetlands (도시 내 습지의 식생구조 변화 모니터링)

  • Kim, Na-Yeong;Nam, Jong-Min;Lee, Gyeong-Yeon;Lee, Kun-Ho;Song, Young-Keun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.6
    • /
    • pp.135-154
    • /
    • 2023
  • Urban wetlands provide various ecosystem services and are subject to restoration and creation projects due to their increased value in the context of climate change. However, the vegetation structure of wetlands is sensitive to environmental changes, including artificial disturbances, and requires continuous maintenance. In this study, we conducted a vegetation survey of three wetlands created as part of a project to restore urban degraded natural ecosystems and monitored the quantitative changes in wetland vegetation structure using an unmanned aerial vehicle. The vegetation survey revealed 73 species in Incheon Yeonhui wetland, and the change in vegetation composition based on wetland occurrence frequency was 11.5% on average compared to the 2018 vegetation survey results. The vegetation survey identified 44 species in Busan Igidae wetland, and the proportion of species classified as obligate upland plants was the highest at 48.8% among all plants, while the proportion of naturalized plants accounted for 15.9% of all plants. The open water surface area decreased from 10% in May 2019 to 6.7% in May 2020. Iksan Sorasan wetland was surveyed and 44 species were confirmed, and it was found that the proportion of facultative wetland plant decreased compared to the 2018 vegetation survey results, and the open water surface area increased from 0.4% in May 2019 to 4.1% in May 2020. The results of this study showed that wetlands with low artificial management intensity exhibited a tendency for stabilization of vegetation structure, with a decrease in the proportion of plants with high wetland occurrence frequency and a relatively small number of new species. Wetlands with high artificial management intensity required specific management, as they had a large change in vegetation structure and a partially high possibility of new invasion. We reaffirmed the importance of continuous monitoring of vegetation communities and infrastructure for wetlands considering the function and use of urban wetlands, and restoration stages. These research results suggest the need to establish a sustainable wetland maintenance system through the establishment of long-term maintenance goals and monitoring methods that consider the environmental conditions and vegetation composition of wetlands.

Seasonal Changes in Structure and Landscape of Urban Stream Corridor - In the Case of Gongji Stream in Chuncheon- (도시하천 하도구조와 경관의 계절변화 - 춘천시 공지천을 중심으로 -)

  • Jo Hyun-Kil;Han Gab-Soo
    • Journal of Environmental Science International
    • /
    • v.14 no.8
    • /
    • pp.739-748
    • /
    • 2005
  • The purpose of this study is to analyze seasonal changes in structure and landscape of Gongji stream corridor in Chuncheon, and to suggest some guidelines to contribute to creating a desirable close-to- nature stream. The study seasonally surveyed floodplain and revetment conditions, channel micro-topography, streamflow level and velocity, and vegetational cover. Flooding, water level, and vegetation were major factors of affecting seasonal changes in streambed structure and stream landscape. Small sand bars and islands were considerably disturbed by flooding and water level change. However, large islands and sand bars in the upper and middle section of the study stream remained or reappeared even after flooding. Flooding also tended to repeat channel sedimentation at the same spot. Controlling water volume of the Euiam Lake, which is adjacent to the study stream, caused higher water level downstream in the dry seasons. The majority of vegetation in sand bars and islands was washed away by the floods. Vehicle passing, crop cultivation, and ball game were other elements which disturbed vegetation in the floodplain. Creating a close-to-nature stream should reflect micro-topographical changes of channel by flooding, prevent improper vehicle entry and human use, and remove concrete material in the revetment and floodplain.

A Physical Model Test of Flood Level Changes by the Vegetation on the Floodplain of Urban River (도시하천 둔치내 식생의 평면적 분포에 따른 홍수위 변화의 실험적 연구)

  • Jo, Hong-Je;Choe, Hyeon-Geun;Lee, Tae-Yeong
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.2
    • /
    • pp.203-212
    • /
    • 2002
  • The purpose of this study was to examine the effect of vegetation on the flood plain in the Taewha river on the changes of flood level using a hydraulic physical model experiment. To simulate 9.0 km river, 1/300 horizontally and 1/72 vertically distorted model was used. The vegetation areas were divided by three sub -areas and the flood level changes were examined according to the locations of vegetation as well as the transverse Profile. As a result, the flood level changes were not significantly affected by the densely distributed vegetation. It was concluded that additional adjustable vegetation in urban river could make useful hydrophilic space.

Seasonal variations of CO2 concentration and flux in vegetation and non-vegetation environments on the Muan tidal flat of Hampyong Bay (함평만 무안 지역 갯벌의 식생 및 비식생 환경에서 이산화탄소 농도와 플럭스의 계절 변동)

  • So, Yoon Hwan;Kang, Dong-hwan;Kwon, Byung Hyuk;Kim, Park Sa
    • Journal of Wetlands Research
    • /
    • v.21 no.4
    • /
    • pp.257-266
    • /
    • 2019
  • In this study, we selected 6 vegetation sites (reed community) and 6 non-vegetation sites (tidal flat) in the Muan tidal flat of Hampyeong Bay, and observed seasonal changes in carbon dioxide concentration, flux and soil temperature at low tide conditions. The study was conducted to identify the characteristics of seasonal changes in vegetation and non-vegetation areas through the data observed in May 30, August 8, 2012 and January 31, 2013. The average carbon dioxide concentration in the vegetation area was the highest in winter, followed by spring and summer, and the non-vegetation area showed the same concentration change as the vegetation area. The carbon dioxide flux in the vegetation area showed a positive (+) value in both spring and summer, but it was negative (-) in the winter. The average value of carbon dioxide flux was the highest in spring, but it was almost similar to summer, and winter was the lowest negative value. Non-vegetation areas showed positive emission in spring, and negative uptake in summer and winter; mean values were the highest in spring, and the difference between summer and winter was small. In summary of seasonal change characteristics of the research area, the emission of carbon dioxide was dominant in both areas in spring. In summer, carbon dioxide emission was dominant in the vegetation area, and the non-vegetation area was observed to uptake by photosynthesis of phytoplankton, but it was very small. In winter, changes in flux in both areas were very slight.

The Process of River Landscape for 10years in Tan-chun Ecological Landscape Reserve (탄천 생태경관보전지역에서의 10년간 하천경관 형성과정)

  • Choi, Jung-Kwon;Choi, Mi-Kyoung;Lee, Ga-Yeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.6
    • /
    • pp.107-115
    • /
    • 2017
  • This study illustrated the process of bar structure and vegetation coverage to understand historical changes of riverbed and suppose adaptive management in Tan-chun ecological landscape reserve. The study site that lower reach of the Tan-chun are known as habitats of migratory bird and aquatic species with dynamic riverbed. Aerial photos from 2006 to 2016 and surveyed vegetation data in 2006 and 2016 were used by analysis of landscape changes and comparison of vegetation coverage. Study area is classified into 3 sites (A: straight site, B: meandering site, C: meandering and junction with Yangjae-cheon). The result showed that bar area of A and C sites gradually increased, B site decreased during 10 years. Also, ratio of bar area to vegetation coverage and level of vegetation coverage increased in all sites during 10 years. All sites seem to have experienced the terrestrialization with time. On the other hand, ratio of annual vegetation increased and ratio of perennial vegetation decreased in C site in 2016 compare to 2006. Because area of Japanese Hops (Humulus japonicas) as one type of annual vegetation increased, other vegetation could not grow up by its powerful expandability. It is time to make active adaptive management based on not only continuos monitoring but also revaluation of river conditions in order to enhance habitat quality and quantity in Tan-chun ecological landscape reserve.

Numerical Experiments of Vegetation Growth Effects on Bed Change Patterns (식생생장 영향을 고려한 하도변화에 대한 수치모의)

  • Kim, Hyung Suk;Park, Moon Hyeong;Woo, Hyo Seop
    • Ecology and Resilient Infrastructure
    • /
    • v.1 no.2
    • /
    • pp.68-81
    • /
    • 2014
  • In this study, the numerical simulation regarding the process and characteristics of topography change due to the vegetation recruitment and growth was carried out by adding the vegetation growth model to two-dimensional flow and sediment transport models. The vegetation introduction and recruitment on the condition for developing an alternate bar reduced the bar migration. The vegetated area and channel width changes were more significantly influenced by changes in upstream discharge rather than the duration of low flow. When the upstream discharge decreased, the vegetation area increased and the channel width decreased. The vegetation introduction and recruitment on the condition for developing a braided channel significantly influenced the characteristics of topography changes. In the braided channel, vegetation reduced the braided index, and when the upstream discharge decreased significantly, the channel topography was changed from the braided channel to the single channel. The vegetation area decreased as the upstream discharge increased. The channel width decreased significantly after the vegetation was introduced and it also decreased as the upstream discharge decreased. It was confirmed through the numerical simulation that a decrease in flood discharge accelerated the vegetation introduction and recruitment in the channel and this allowed to confirm its influence on the characteristics of topography changes qualitatively.

Changes in Vegetation Characteristics Over Time in the Isolated Forests of the Urban Areas: A Case Study on the Mt. Hwangyeong, Busan Metropolitan City (도시 내 고립된 임지의 경시적 식생특성 변화: 부산광역시 황령산을 사례로)

  • Cho, Jae Hyong;Park, Chan Ryul;Oh, Jeong Hak;Kim, Jun Soo;Cho, Hyun Je
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.3
    • /
    • pp.284-293
    • /
    • 2016
  • In order to assess th changes in vegetation characteristics over time in the forest-lands which is isolated by urbanization, vegetation surveys based on the Braun-Blanquet phytosociological method was carried out in 1996 and 2015 on Mt. Hwangyeong located in the center of Busan metropolitan city, South Korea. The number of vegetation types based on floristic composition showed no significant changes, the vegetation units under the community levels was more or less represents the difference. the average total vegetation cover and average number of species per unit area ($100m^2$) was increased 16% and 2 species, respectively. The relative importance value (RIV) for each tree species, Quercus spp. like as Q. mongolica and Q. serrata was decreased, while the warmth-tolerant trees, evergreen broad-leaved trees, and mesophyte like Lindera erythrocarpa, Styrax japonica, Osmanthus heterophyllus, and Stephanandra incisa was increased significantly. Changes of the life form spectrums of vascular plants did not substantially, hemicryptophyte(H) and therophyte (Th) was decreased, while nanophanerophyte(N) was increased significantly. Also through the creating of large-scale vegetation map (based on physiognomic vegetation types) was compared the spatial distribution characteristics of each vegetation types.

A Study on Impacts of Camping Recreation on Vegetation and Soil - The Case of Hwaum-Temple District Campsite in Mt. Jiri National Park - (야영행위가 식생 및 토양에 미치는 영향에 고나한 연구-지리산국립공원 화엄사 지구 야영장을 대상으로)

  • 조현길;이경재;오구균
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.14 no.3
    • /
    • pp.21-31
    • /
    • 1987
  • The overuse in the outdoor recreation lands has been deteriorating the natural resources and landscapes. So this study was executed to measure the users'impacts on vegetation and soil at Hwaum Temple District Campsite in the Mt. Jiri National Park, the southern part of Korea. Five sites were sampled in the study area according to the extent of impact observed. Then the users'densities and impacts on vegetation and soil were measured at each site. According to the result of this study, the numbers of species and individuals and the coverage of lower-layer vegetation showed outstanding changes by only light use. The numbers of species and individuals of middle-layer vegetation, species diversity indices, change rate in species composition of lower and middle-layer vegetation, damage rate of forces, contents of clay, soil moisture and organic matters, exchangeable base ions, soil hardness, organic matter depth and bare area of the campsite showed conspicuous changes from the site 4(19.6men / 1,000㎡). Especially, the self-repair of vegetation was impossible as the result of analysis of soil hardness and the formation of natural vegetation was expected to be difficult as the result of vegetation sturcture analysis over the users'average density of 19.6men /1,000㎡. The campsite management of this area shall be proposed as follows to prevent serious deterioration of natrual environment. A limitation of the present use and a conservation on soil and vegetation should be required at the site 4 and 5. Specially, prevention of camping recreation and artificial rehabilitation are necessary at the site 5(24. 3 men/1000㎡)

  • PDF

Actual Vegetation and Potential Natural Vegetation of Seonunsan Area, Southwestern Korea (선운산 지역의 현존식생과 잠재자연식생)

  • Kim, Jeong-Un;Yang-Jai Yim
    • The Korean Journal of Ecology
    • /
    • v.10 no.4
    • /
    • pp.159-164
    • /
    • 1987
  • The potential natural vegetation of Seonunsan area, southwestern Korea, was inferred from the actual vegetation. In previous two papers the plant communities of actual vegetation of the area is grouped into nine types; Quercus variabilis, Pinus densiflora, Carpinus tschonoskii, Quercus serrata, Camellia japonica (plantation), Quercus aliena, Pinus thunbergii, Zelkova serrata and Carpinus laxiflora forest. With the analysis of species richness, age structure and various informations on vegetation changes of the plant communities, two paths of late stage succession are suggested in climatic climax starting from Pinus densiflora forest in the area. One is through Quercus variabilis forest to Carpinus laxiflora forest in upper parts of the mountain and the other through Quercus aliena forest to Carpinus tschonoskii forest in lower parts of the mountain. With analysis of actual vegetation and the examination of informations including human activities in the area, the potential natural vegetation of the area was inferred. The potential natural vegetation of the area was mainly composed of Carpinus laxiflora, Carpinus tschonoskii, Pinus densiflora and Zelkova serrata forest. The actual vegetation map and potential natural vegetation map (scale, 1:25, 000) and other results from this study might be the useful data for the protection of natural vegetation and restoration of the current vegetation.

  • PDF

A Study on Vegetation Changes for 11years and Vegetation Structure in the Green Buffer Zone of Sihwa Industrial Complex (시화공단 완충녹지의 11년간(2006~2017년) 식생변화 및 식생구조 연구)

  • Choi, Jin-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.5
    • /
    • pp.81-96
    • /
    • 2018
  • The purpose of this study is to analyze the characteristics of vegetation changes and structures in the buffer green zone of Sihwa Industrial Complex and propose environmental, ecological and multi-functional vegetation management directions. The density of the Pinus thunbergii decreased from $23.1trees/100m^2$ in 2006 to $9.6trees/100m^2$ in 2017 due to the influence of thinning works. Its green volume increased from $0.97m^3/m^2$ to $2.02m^3/m^2$, contributing to the improvement of the atmospheric environment and promotion of biodiversity. The density of deciduous broad-leaved trees at the top maintained at $18{\sim}21trees/100m^2$. In the areas where the understory vegetation was removed, Pueraria lobata spread as an invasive plant and disturbed the forest. In the areas where the understory vegetation was not removed, various native plant species including the Rhus javanica and Celtis sinensis were introduced and contributed to the development of a forest in a multiple structure. There was a concern with the spread of Robinia pseudoacacia which developed into understory vegetation in Pinus thunbergii forest and some canopy forest. The study proposed vegetation management directions for the back, top and front side according to the physical structure of large-scale buffer green zone formed in a long linear form and the usage characteristics of adjacent land.