• Title/Summary/Keyword: Change of tidal water level

Search Result 75, Processing Time 0.019 seconds

A Study on the Cultivation Processes and Settlement Developments on the Mangyoung River Valley (만경강유역의 개간과정과 취락형성발달에 관한 연구)

  • NamGoong, Bong
    • Journal of the Korean association of regional geographers
    • /
    • v.3 no.2
    • /
    • pp.37-87
    • /
    • 1997
  • As a results of researches on the cultivation processes and settlement developments on the Mangyoung river valley as a whole could be have four 'Space-Time Continuity' through a [Origin-Destination] theory model. On a initial phases of cultivation, the cultivation process has been begun at mountain slopes and tributory plains in upper part of river-basin from Koryo Dynasty to early Chosun Dynasty. At first, indigenous peasants burned forests on the mountain slopes for making 'dryfield' for a cereal crops. Following population increase more stable food supply is necessary facets of life inducing a change production method into a 'wetfield' in tributory plains matching the population increase. First sedentary agriculture maybe initiated at this mountain slopes and tributory plains on upper part of river basin through a burning cultivation methods. Mountain slopes and tributory plains are become a Origin area in cultivation processes. It expanded from up to down through the valleys with 'a bits of land' fashion in a steady pace like a terraced fields expanded with bit by bit of land to downward. They expanded their land to the middle part of river basin in mid period of Chosun Dynasty with dike construction techniques on the river bank. Lower part of river cultivated with embankment building techniques in 1920s and then naturally expanded to the tidal marshes on the estuaries and river inlets of coastal areas. 'Pioneer fringes' are consolidated at there in modern times. Changes in landscapes are appeared it's own characters with each periods of time. Followings are results of study through the Mangyoung river valley as a whole. (1) Mountain slopes and tributory plains on the upper part of river are cultivated 'dryfields' by indigenous peasants with Burning cultivation methods at first and developed sedentary settlements at the edges of mountain slopes and on the river terrace near the fields. They formed a kind of 'periphery-located cluster type' of settlement. This type of settlement are become a prominant type in upper part of river basin. 'Dryfields' has been changed into a 'wetfields' at the narrow tributory plains by increasing population pressure in later time. These wetfields are supplied water by Weir and Ponds Irrigation System(제언수리방법). Streams on the tributory plains has been attracted wetfields besides of it and formed a [water+land] complex on it. 'Wetfields' are expanded from up to downward with a terraced land pattern(adder like pattern, 붕전) according to the gradient of valley. These periphery located settlements are formed a intimate ecological linkage with several sets of surroundings. Inner villages are expanded to Outer villages according to the expansion of arable lands into downward. (2) Mountain slopes and tributory plains expanded its territory to the alluvial deposited plains on the middle part of river valley with a urgent need of new land by population increase. This part of alluvial plains are cultivated mainly in mid period of Chosun Dynasty. Irrigation methods are changed into a Dike Construction Irrigation method(천방수리방법) for the control of floods. It has a trend to change the subjectives of cultivation from community-oriented one who constructed Bochang along tributories making rice paddies to local government authorities who could be gather large sums of capitals, techniques and labours for the big dike construction affairs. Settlements are advanced in the midst of plains avoiding friction of distances and formed a 'Centrallocated cluster type' of settlements. There occured a hierarchical structures of settlements in ranks and sizes according merits of water supply and transportation convenience at the broad plains. Big towns are developed at there. It strengthened a more prominant [water+land] complex along the canals. Ecological linkages between settlements and surroundings are shaded out into a tiny one in this area. (3) It is very necessary to get a modern technology of flood control at the rivers that have a large volume of water and broad width. The alluvial plains are remained in a wilderness phase until a technical level reached a large artificial levee construction ability that could protect the arable land from flood. Until that time on most of alluvial land at the lower part of river are remained a wilderness of overgrown with reeds in lacks of techniques to build a large-scale artificial levee along the riverbank. Cultivation processes are progressed in a large scale one by Japanese agricultural companies with [River Rennovation Project] of central government in 1920s. Large scale artificial levees are constructed along the riverbank. Subjectives of cultivation are changed from Korean peasants to Japanese agricultural companies and Korean peasants fell down as a tenant in a colonial situation of that time in Korea. They could not have any voices in planning of spatial structure and decreased their role in planning. Newly cultivated lands are reflected company's intensions, objectives and perspectives for achieving their goals for the sake of colonial power. Newly cultivated lands are planned into a regular Rectangular Block settings of rice paddies and implanted a large scale Bureaucratic-oriented Irrigation System on the cultivated plains. Every settlements are located in the midst of rice paddies with a Central located Cluster type of settlements. [water+land] complex along the canal system are more strengthened. Cultivated space has a characters of [I-IT] landscapes. (4) Artificial levees are connected into a coastal emnankment for a reclamation of broad tidal marshes on the estuaries and inlets of rivers in the colonial times. Subjectives of reclamation are enlarged into a big agricultural companies that could be acted a role as a big cultivator. After that time on most of reclamation project of tidal marshes are controlled by these agricultural companies formed by mostly Japanese capitalists. Reclaimed lands on the estuaries and river inlets are under hands of agricultural companies and all the spatial structures are formed by their intensions, objectives and perspectives. They constructed a Unit Farming Area for the sake of companies. Spatial structures are planned in a regular one with broad arable land for the rice production of rectangular blocks, regular canal systems and tank reservoir for the irrigation water supply into reclaimed lands. There developed a 'Central-located linear type' of settlements in midst of reclaimed land. These settlements are settled in a detail program upon this newly reclaimed land at once with a master plan and they have planned patterns in their distribution, building materials, location, and form. Ecological linkage between Newly settled settlemrnts and its surroundings are lost its colours and became a more artificial one by human-centred environment. [I-IT] landscapes are become more prominant. This region is a destination area of [Origin-Destination] theory model and formed a 'Pioneer Fringe'. It is a kind of pioneer front that could advance or retreat discontinously by physical conditions and socio-cultural conditions of that region.

  • PDF

Long-term Changes of Bathymetry and Surface Sediments in the dammed Yeongsan River Estuary, Korea, and Their Depositional Implication (영산강 하구의 수심 및 표층 퇴적물 특성의 변화와 퇴적환경)

  • KIM, YOUNG-GIL;CHANG, JIN HO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.22 no.3
    • /
    • pp.88-102
    • /
    • 2017
  • Long-term changes in bathymetry and grain size of surface sediments were investigated for understanding depositional sedimentary environments in the channelized Yeongsan River Estuary, Korea. The results revealed that an average depth of the estuary had decreased up to 2.1 m from 1982 to 2006, while it had increased to 0.3 m from 2006 to 2012. The rapid decrease of the water depth from 1982 to 2006 was due to the vast deposition of mud caused by the change of water course and flow velocity after the estuary was dammed. Meanwhile the increase of the water depth from 2006 to 2012 may be associated with multiple erosional processes, including a dredging at the southern part of the estuary and other erosions from the dike sluice expansion work. Considering the water-depth change and tidal-level variation in the study area, an depositional rate in the estuary is estimated to be 8~9 cm/yr for the last 2 decades (1982~2006). The sediments of Yeongsan River Estuary are largely composed of silt-clay mixtures: overall, silt is distributed mainly in the shallow area of the estuary edge, while clay is confined to the deep area of the estuary center. Mean grain size of the sediments is 6.0 Ø on average in 1997, 7.8 Ø on average in 2005 and 7.7 Ø on average in 2012, respectively, suggesting that the sediments became finer due to the increase of silt and clay contents in 1997~2005. Furthermore, several lines of evidences, including the comparison between the amounts of the sediment influx discharged from the Yeongsan River and the sediments in the estuary, and the changes in distribution pattern of silt and clay contents implying that they moved from offshore to estuary dike, indicate that the mud sediments are originated mainly from the offshore, not from the river.

Benthic Foraminiferal Assemblage and Sedimentary Environment of Core Sediments from the Northern Shelf of the East China Sea (북동중국해 대륙붕 코아 퇴적물의 저서유공충 군집 특성과 퇴적환경 연구)

  • Kang, So-Ra;Lim, Dhong-Il;Kim, So-Young;Rho, Kyoung-Chan;Yoo, Hae-Soo;Jung, Hoi-Soo
    • Journal of the Korean earth science society
    • /
    • v.29 no.6
    • /
    • pp.454-465
    • /
    • 2008
  • Benthic foraminiferal assemblage and AMS radiocarbon dating of core sediments from the northern shelf of the East China Sea were analyzed in order to understand the paleoenvironment and sedimentary environmental changes around the Korean marginal seas since the last glacial maximum (LGM). The core sediments, containing continuous records of the last 16,000 years, reveal a series of well-defined vertical changes in number of species (S), P/T ratio and species diversity (H) as well as foraminiferal assemblage. Such down-core variations display a sharp change at a core depth of approximately 240 cm, which corresponds to ca. 10,000 year B.P. The sediments of the lower part of the core (240${\sim}$560 cm, Zone I), including the well-developed tide-influenced sedimentary structures, are characterized by high abundances of Ammonia beccarii and Elphidium clavatum (s.l.) and low values in number of species, P/T ratio and diversity. These tide-influenced signatures and foraminiferal assemblage characters suggest that the sediments of Zone I were deposited in a coastal environment (water depths of 20${\sim}$30 m) such as tidal estuary with an influence of the paleo-rivers (e.g., old-Huanghe and Yangtze rivers) during the early phase of the sea-level rise (ca. 16,000 to 10,000 years) since the LGM. In contrast, the upper core sediments (0${\sim}$240 cm, Zone II) are characterized by abundant Eilohedra nipponica and Bolivina robusta with a minor contribution of A. ketienziensis angulata and B. marginata. and high values in number of species, P/T ratio and diversity. Based on relative abundance of these assemblage, Zone II can be divided into two subzones (IIa and IIb). Zone IIa is interpreted to be deposited under the inner-to-middle shelf environment during the marine transgression in the early Holocene (after ca. 9,000 yr B.P.) when sea level rapidly increased. The sediments of zone IIb most likely deposited after 6,000 yr B.P. under the outer shelf environment (80${\sim}$100 m water depth), which is similar to modem depositional environments. The muddy sediments of zone IIb were probably transported from the old-Huanghe and Yangtze Rivers during the late Holocene. We suggest that the present-day oceanographic conditions over the Yellow and the East China Seas have been established after ca. 7,000${\sim}$6,000 yr B.P. when the Kuroshio Current began to influence this area.

Characteristics of Beach Change and Sediment Transport by Field Survey in Sinji-Myeongsasimni Beach (신지명사십리 해수욕장에서 현장조사에 의한 해빈변화와 퇴적물이동 특성)

  • Jeong, Seung Myong;Park, Il Heum
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.594-604
    • /
    • 2021
  • To evaluate the causes of beach erosion in Sinji-Myeongsasimni Beach, external forces, such as tides, tidal currents, and waves, were observed seasonally from March 2019 to March 2020, and the surface sediments were analyzed for this period. In addition, the shoreline positions and beach elevations were regularly surveyed with a VRS GPS and fixed-wing drone. From these field data, the speed of the tidal currents was noted to be insufficient, but the waves were observed to af ect the deformation of the beach. As the beach is open to the southern direction, waves of heights over 1 m were received in the S-SE direction during the spring, summer, and fall seasons. Large waves with heights over 2 m were observed during typhoons in summer and fall. Because of the absence of typhoons for the previous two years from July 2018, the beach area over datum level (DL) as of July 2018 was greater by 30,138m2 compared with that of March 2019, and the beach area as of March 2020 decreased by 61,210m2 compared with that of March 2019 because of four typhoon attacks after July 2018. The beach volume as of March 2019 decreased by 5.4% compared with that of July 2018 owing to two typhoons, and the beach volume as of September 2019 decreased by 7.3% because of two typhoons during the observation year. However, the volume recovered slightly by about 3% during fall and winter, when there were no high waves. According to the sediment transport vectors by GSTA, the sediments were weakly influxed from small streams located at the center of the beach; the movement vectors were not noticeable at the west beach site, but the westward sediment transport under the water and seaward vectors from the foreshore beach were prominently observed at the east beach site. These patterns of westward sediment vectors could be explained by the angle between the annual mean incident wave direction and beach opening direction. This angle was inclined 24° counterclockwise with the west-east direction. Therefore, the westward wave-induced currents developed strongly during the large-wave seasons. Hence, the sand content is high in the west-side beach but the east-side beach has been eroded seriously, where the pebbles are exposed and sand dune has decreased because of the lack of sand sources except for the soiled dunes. Therefore, it is proposed that efforts for creating new sediment sources, such as beach nourishment and reducing wave heights via submerged breakwaters, be undertaken for the eastside of the beach.

Nitrogen Removal Via Sediment Denitrification and Its Seasonal Variations in Major Estuaries of South Coast of Korean Peninsula (남해안 주요 하구 갯벌 퇴적물의 탈질소화를 통한 질소 영양염 제거)

  • Heo, Nak-Won;Lee, Ji-Young;Choi, Jae-Ung;An, Soon-Mo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.2
    • /
    • pp.81-96
    • /
    • 2011
  • Sediment oxygen demand(SOD) and denitrification rates were measured in four major estuaries(Suncheon Bay, Seomjin river estuary, Goseong stream estuary and Masan Bay) in south coast of Korean peninsula from March of 2009 to May 2010 to estimate organic matter cleaning capacity. SOD was estimated from the temporal dissolved oxygen concentration change and isotopic pairing technique was employed to measure denitrification. Sediment oxygen demand(SOD) was ranged from -5.1 to 24.6 mmole $O_2m^{-2}d^{-1}$ and denitrification rate was ranged from 0.0 to 3.9 mmole $N_2m^{-2}d^{-1}$in the study area. SOD was the highest in Masan Bay(-2.2 to 19.2, average = 10.2 mmole $O_2m^{-2}d^{-1}$) and Suncheon, Goseong, Tae-an and Seomjin followed. Denitrification was also the highest in Masn Bay(0.0 to 3.9, average = 1.0 mmole $N_2m^{-2}d^{-1}$) and Goseong, Seomjin, Suncheon and Taean followed. The effect of benthic photosynthesis by microphytobenthos on denitrification was evident in some season of Tae-an, Seomjin, and Masn Bay. The increased oxygen level produced by photosynthesis stimulated nitrification without severe adverse effect on denitrification and, as a result, coupled nitrification and denitrification was enhanced in these areas. A difference of seasonal patterns of denitrification at each site depended on relative importance of denitrification on different nitrate source($D_w$: nitrate from water column and $D_n$: nitrated produced during nitrification). Denitrification was maximum during spring in Goseong, Suncheon and Masan Bay. On the contrary, denitrification was the highest during summer in Tae-an and Seomjin estuary.