• Title/Summary/Keyword: Change of tidal water level

Search Result 75, Processing Time 0.026 seconds

Sea Level Change due to Nonlinear Tides in Coastal Region (연안해역에서 비선형 조석으로 인한 해수면 변화)

  • Jung, Tae Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.5
    • /
    • pp.228-238
    • /
    • 2017
  • In coastal region, tidal harmonic constants of semi-diurnal tides and nonlinear tides were collected. The observed tide data of KHOA were analyzed by a tide harmonic analysis method. In the southwestern coasts and Han river estuary, nonlinear tides are clearly generated. The generation of tide non-linearity and tide asymmetry is closely related with tide form factor in Korean coastal zone. Tide non-linearity and asymmetry in Mokpo harbour have increased by a series of coastal development projects. The increase has caused rise of high water level and drop of low water level, and increase of tidal range. In Kunsan Outport, tidal range has been declined due to inter-annual change of nonlinear tides after completion of Samangeum sea-dyke.

A Study on Hydrographic Survey based on Acoustic Echo-Sounder and GNSS (음향측심기와 GNSS 기반의 수로측량에 관한 연구)

  • PARK, Eung-Hyun;KIM, Dae-Hyun;JEON, Hae-Yeon;KANG, Ho-Yun;YOO, Kyung-Wan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.3
    • /
    • pp.119-126
    • /
    • 2018
  • In this study, In this study, the Datum Level-based hydrography surveying system and the ellipsoid-based system were analyzed to acquire more consistent depth data. For the study, the ellipsoid-based surveying for hydrography was conducted twice for the same track line. And the depth was calculated by correcting rise and fall of water level (water level change by tidal energy and other marine environmental energies) respectively by the traditional water level correction method and ellipsoidally referenced water level correction method. there is able to check that Ellipsoid-based hydrographic surveying data is more improved than Datum Level-based hydrographic surveying data in aspect of level difference phenomenon in the same area (surveying line). This result shows that if the Ellipsoid-based hydrographic surveying is performed, the sea level change (tidal energy and other marine environmental energy) of the survey area in real time could be reflected to more consistent generating bathymetric data.

A Study on the Tidal Harmonic Analysis, and long-term Sea Level Ocillations at Incheon Bay (인천만의 조석조화해석 및 장기해수면 변동연구)

  • Lee, Yong-Chang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.5
    • /
    • pp.505-513
    • /
    • 2010
  • This study investigate the characteristics of tidal constituents, and long-term mean sea level oscillations at Incheon bay. For this, the conditions of three tide stations around Incheon bay have examined, and carried out harmonic analysis on water level data for periods of about 40 years(1960~2007). Four major tidal constituents($M_2$, $S_2$, $K_1$, $O_1$) of each tide station showed tendency that change over the 18.61year lunar node cycle, and the type of tide at three stations is mainly semi-diurnal tides. And also, the past monthly tidal modulations are especially sensitive to the cumulative year of water level data in accuracy of tidal prediction. In case that regard the detached data at three tide stations as a single time series data of 40 years, the results of analysis on a single time series, long-term mean sea level oscillations and modulations of tidal datum at tide stations appears with a range of about 10cm, respectively. In addition, the predicted tides at the Inchcon harbor by global and regional tide models of OSU(Oregon State University) based on various satellite altimetric(Topex Poseidon, Topex Tandem, ERS, GFO) data are compared with the observed tides by KHOA(the Korea Hydrographic and Oceanographic Administration). The results show that the high resolution regional model is a quite good agreement at coastal shallow water region.

Reconsideration of evaluating design flood level at Imjin River estuary (임진강 하류 감조구간에서 홍수위 산정 재고)

  • Park, Chang Geun;Baek, Kyong Oh
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.9
    • /
    • pp.617-625
    • /
    • 2017
  • In this study, it was examined that a methodology for evaluating the design flood level reasonably at Imjin River estuary affected by the tide periodically. First of all, the change of the flood level was observed by performing unsteady simulation which can take into account the characteristics of the tidal rivers. And the variations of the flood level was analyzed by change of the Manning's roughness coefficient which is sensitive to the water level calculation. The results were compared with the design flood level at Imjin River estuary announced in the 2011 Imjin River Basic Plan Report. For reference, the design flood level reported in 2011 has been calculated by using a section of a huge riverbed dredging section as input data. From the simulation results, it was found that the flood level evaluated by this study was able to satisfy the freeboard of the levee without the riverbed dredging when the roughness coefficient was assigned to the same value as that of the Han river estuary in the calculation of the flood level, and the unsteady flow simulation was carried out to reflect on the tidal river.

Hydrologic Characterization through Ground Water Monitoring in a Coastal Aquifer (해안 대수층에서 지하수 장기 모니터링을 통한 수리 특성 조사)

  • Shim, Byoung-Ohan;Lee, Chol-Woo
    • Economic and Environmental Geology
    • /
    • v.44 no.3
    • /
    • pp.239-246
    • /
    • 2011
  • Groundwater in small islands is used as main water resource but the overuse of groundwater may cause seawater intrusion and temperature decrease in geothermal wells. This study aimed to characterize the hydrogeology of Maeum-ri area in Seokmo Island of Ganghwagun using long-term monitoring at groundwater wells and geothermal wells. In the monitoring period seasonal water level change, consistent drop or increase of water levels are not detected. The groundwater temperature about 10m below ground surface shows year cycle variation having two to five months difference with ambient temperature cycle. The storativity was calculated by tidal method. The storativity estimated by adapting tidal efficiency factor showed some larger values than that by using tidal time lag. The result suggested that the tidal method assuming several assumptions on aquifer condition may produce broad ranges but the calculated ranges at this application are reasonable. The similar shape of groundwater level change and tidal effects was observed at several wells clustered east-south-east direction which may implicate the distribution of vertical fracture system strongly related with groundwater flow channels. The applied methodology and study results will bc valuable to evaluate optimal pumping rate for the preservation of groundwater resources, and to manage geothermal development.

Application of tidal energy for purification in fresh water lake

  • Jung, Rho-Taek;Isshiki, Hiroshi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.212-225
    • /
    • 2015
  • In order to preserve the quality of fresh water in the artificial lake after the reclamation of an intertidal flat at the mouth of a river, we suggest two novel methods of water purification by using tidal potential energy and an enclosed permeable embankment called an utsuro (Akai et al., 1990) in the reclaimed region. One method uses an inflatable bag on the seabed within an utsuro, while the other uses a moored floating barge out of a dyke. Each case employs a subsea pipe to allow flow between the inside and outside of the utsuro. The change in water level in the utsuro, which is pushed through the pipe by the potential energy outside, caused circulation in the artificial lake. In this paper, we analyzed the inflatable bag and floating barge motion as well as the pipe flow characteristics and drafts as given by a harmonic sea level, and compared the theoretical value with an experimental value with a simple small model basin. The numerical calculation based on theory showed good agreement with experimental values.

Performance Evaluation of Ocean Small Hydropower Plant by Analyzing Water Level and Flow Rate of Circulating Water (방류수의 수위 및 유량 분석을 통한 해양 소수력 성능평가)

  • Kang, Keum-Seok;Kim, Ji-Young;Ryu, Moo-Sung
    • New & Renewable Energy
    • /
    • v.5 no.3
    • /
    • pp.32-39
    • /
    • 2009
  • The Samcheonpo ocean small hydropower plant (SHP) has a special feature of using marginal hydraulic head of circulating water system of fossil fuel power plant as a power source and having the characteristics of general hydropower generation and tidal power generation as well. Also, it contributes to reducing green house gases and developing clean energy source by recycling circulating water energy otherwise dissipated into the ocean. The efficiency of small hydropower plant is directly affected by effective head and flow rate of discharged water. Therefore, the efficiency characteristics of ocean hydropower plant are analyzed with the variation of water level and flow rate of discharged water, which is based on the accumulated operation data of the Samcheonpo hydropower plant. After the start of small hydropower plant operation, definite rise of water level was observed. As a result of flow pattern change from free flow to submerged flow, the instability of water surface in overall open channel is increased but it doesn't reach the extent of overflowing channel or having an effect on circulation system. Performance evaluation result shows that the generating power and efficiency of small hydropower exceeds design requirements in all conditions. Analysis results of CWP's water flow rate verify that the amount of flowing water is measured less and the highest efficiency of small hydropower plant is achieved when the effective head has its maximum value. In conclusion, efficiency curve derived from water flow rate considering tidal level shows the best fitting result with design criteria curve and it is verified that overall efficiency of hydropower system is satisfactory.

  • PDF

Experimental Study on Interaction Effect of Darrieus Tidal Stream Turbines (다리우스 조류 터빈의 상호작용 효과에 대한 실험적 연구)

  • Kim, Jihoon;Park, Jin-Soon;Ko, Jin Hwan
    • Ocean and Polar Research
    • /
    • v.41 no.3
    • /
    • pp.193-202
    • /
    • 2019
  • There have been various approaches for efficiency improvement of a Darrieus tidal stream turbine after it was introduced as an alternative of horizontal axis turbines. Among the approaches, the researches on the interaction effect of dual configuration were conducted. In this study, a dual Darrieus turbine with a coupling mechanism was proposed for investigating the interaction effect. Also, the effect of bi-directional tidal stream was analyzed with prototype fabrication, apparatus set-up and experiment conduction in indoor and offshore facilities. As the results of the experiments, the dual turbine in case of counter-rotation and inflow between the turbines improved efficiencies by 9.5% and 11.31%, respectively, as compared to the single turbine. Also, the dual turbine in case of the inflow improved efficiencies by 9.4% and 16.62%, respectively, as compared to that in case of outflow between the turbines which represented the case of 180 degrees change of flow direction after slack water. Therefore, the proposed dual turbine showed the advantage in terms of the efficiency as compared to the single turbine and the effect level of the slack water on the performance of the dual turbine was investigated.

Analysis of Density Current in the Tidal River (감조하천(感潮河川)의 하구(河口) 밀도류해석(密度流解析))

  • Suh, Seung Duk;Park, Sung Bae
    • Current Research on Agriculture and Life Sciences
    • /
    • v.4
    • /
    • pp.70-76
    • /
    • 1986
  • The purpose of this study is to offer the basic data of the tidal river development program by grasping the diffusion between the high density-sea water and the low density-fresh water in the tidal river. The tidal range of Hyungsan river which flows at Youngil bay in Pohang was selected to analysis the phenomenon of density current. The results obtained are as follows ; The tide of Youngil bay was one time a day, 0.104m in high tide difference and 0.085m in mean tidy difference. The change of sea level by tide was negligible. The volume of reserved water by sea water was $2,700,000m^3$ and available water of irrigation was $1,200,000m^3$ that salt density is below $750{\mu}{\mho}/cm$ out of total volume. Salt intrusion phenomenon by density current was a little water level change, however, it become a salt wedge type by the much salt invasion during the spring tide and it makes a well-mixed type by the retreating salt wedge during the neap tide. As long as there were some density differences between sea water and fresh water, net upstream flow was existed along the bottom of water way from the estuary to the upstream channel.

  • PDF

The Experimental Study on the Evaluation of Tidal Power Generation Output Using Water Tank (수조를 이용한 조력발전량산정에 관한 실험적 연구)

  • Jeong, Shin-Taek;Kim, Jeong-Dae;Ko, Dong-Hui;Choi, Woo-Jung;Oh, Nam-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.2
    • /
    • pp.232-237
    • /
    • 2008
  • A method to generate electric power from small scale water tank. For this purpose, manufacturing tank is investigated, measuring water level change at any time, and finally comparing experimental and theoretical value, are performed. Inner and outer tank are made to simulate flood and ebb generation. Two sets of pipe are connected between tanks, and experiments are performed under varying flowrate. Coefficients of flowrate are calculated comparing water level change data and theoretical value. Measured and theoretical water levels are highly correlated, and this ascertains that analytical equation simulates real water level changes well. Flowrate change depending on the existence of propeller and valve, on flood and ebb generation, shows the necessity of experiments in the process of manufacturing electric power system. Moreover, total energy calculated from experimental data agrees well with that of theoretical equation. In spite of small tidal power output, this generating system with optimum water tank can be applied to any place where high water level change occurs, and can make a contribution to producing new and renewable energy consequently.