• 제목/요약/키워드: Chamber width

검색결과 158건 처리시간 0.025초

디지털날염용 고속 구동형 잉크젯 프린팅 헤드의 특성해석 (Characteristic Analysis of High Speed Inkjet Printing Head for Digital Textile Printing)

  • 이덕규;허신
    • 센서학회지
    • /
    • 제27권6호
    • /
    • pp.421-426
    • /
    • 2018
  • To develop a piezoelectric inkjet printhead for high-resolution and high-speed printing, we studied the characteristics of an inkjet printhead by analyzing the major design parameters. An analytical model for the inkjet printhead was established, and numerical analysis of the coupled first-order differential equation for the defined state variables was performed using state equations. To design the dimension of the inkjet printhead with a driving frequency of 100 kHz, the characteristics of the flow rate and discharge pressure of the nozzle were analyzed with respect to design variables of the flow chamber, effective sound wave velocity, driving voltage, and voltage waveform. It was predicted that the change in the height of the flow chamber does not significantly affect the Helmholtz resonance frequency and discharge speed of the nozzle. From the analysis of change in flow chamber width, it is observed that as the width of the flow chamber increases, the ejection speed greatly increases and the Helmholtz resonance frequency decreases considerably, thereby substantially affecting the performance of the inkjet printhead.

마이크로 펌프용 디퓨져/노즐의 유동 특성에 관한 CFD 해석 (CFD Analysis on the Flow Characteristics of Diffuser/Nozzles for Micro-pumps)

  • 김동환;한동석;정시영;허남건;윤석진
    • 설비공학논문집
    • /
    • 제17권6호
    • /
    • pp.544-551
    • /
    • 2005
  • The flow characteristics have been numerically investigated for various shapes of the diffuser/nozzles which are used for a valveless micro-pump. The important parameters considered in this study are the throat width ($15\~120\mu$m), the taper angle ($3.15\~25.2^{\circ}$), and the diffuser length ( $600\~4,800\mu$m), and the size of the middle chamber ($1\~16mm^2$). To find the optimal values for these parameters, steady state calculations have been performed assuming the constant pressure difference between the inlet and exit of the flow For the taper angle and the throat width, it is found that there exists an optimum at which the net flow rate is the greatest. The optimal taper angle is in the range of $10\~20^{\circ}$ for all the pressure differences; and the throat width indicates an optimal value near $75\mu$m for the case of 35 kPa pressure difference. The net flow rate is also influenced by the size of the middle chamber. With decreasing chamber size, the net flow rate is reduced because of the interference between two streams flowing into the middle chamber. The unsteady pulsating flow characteristics for a micro-pump with a given diffuser/nozzle shape have been also investigated to show the validity of the steady state parametric study.

On-Off 제어기를 이용한 가변추력 고체추진 기관의 압력제어 (Pressure Control of a Variable Thrust Solid Propulsion System Using On-Off Controllers)

  • 권순규;김영석;고상호;서석훈
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.942-948
    • /
    • 2011
  • 고체추진기관은 구조가 비교적 간단하고 장기적 저장성이 우수한 반면에 일반적으로 추력의 조절등에 한계성을 가지고 있다. 본 논문에서는 구현의 용이함과 에너지 효율성이 좋은 on-off 제어기법을 이용한 가변추력 고체추진 기관의 압력 제어를 위한 제어기를 소개한다. 연소기 내 압력제어를위해 질량보존만을 고려한 추진기관의 연소기 내 압력변화 모델에 대하여 고전적인 비례-적분 제어기와 같은 연속적 제어 기법과 PWM, PWPFM과 같은 on-off 제어기를 설계하고 시뮬레이션을 통해 결과를 비교한다.

  • PDF

Fluidic 유량계의 기하학적 변수가 유동률에 미치는 영향 (Effects of geometric parameters of fluidic flow meter on flow rate)

  • 박경암;윤기영;유성연
    • 대한기계학회논문집B
    • /
    • 제21권12호
    • /
    • pp.1608-1614
    • /
    • 1997
  • The fluidic flow meter detects the gas flow rate based on the principle of fluidic oscillation instead of the conventional displacement method. It has many merits: wide rangeability, no moving mechanical parts and calibration insensitive to physical properties of fluids. The width of nozzle, size of oscillation chamber, size of target, width of outlet are tested to obtain the effects of jet oscillation on the fluidic flow meter. As the width of nozzle is too wide compared with the size of target, jet oscillation is unstable. The oscillation frequency decreases as the distance between the nozzle and target increases and also as the distance between target and outlet contraction increases. Two different vortexes exist in the front and the rear regions of the target, and they affect the oscillation frequency. The outlet contraction is very important, because the feedback flow is generated by the blocking of the flow. As the width of outlet increases, the jet oscillation frequency decreases. The linearity of this tested flow meter is quite good.

석굴암의 돌은 말한다: 석불사 석굴의 건축 평면과 벽면 설계 (The Stones of Seokguram Speak: Floor Plan and Wall Design of Seokbulsa Grotto)

  • 윤재신
    • 건축역사연구
    • /
    • 제29권1호
    • /
    • pp.21-37
    • /
    • 2020
  • The purpose of this paper is to reconstruct the original floor plan and wall design of Seokbulsa Grotto in Kyungju; commonly known as 'Seokguram'. The paper presents an array of dimensional studies of the existing Seokguram to examine its architectural form, and infers the original floor plan and wall design of Seokbulsa Grotto. Seokbulsa Grotto is designed as a system of 'coherent modules' and was constructed using the dry stone method, which interlocks large stone modules into a whole that becomes the load-bearing structure itself. The design principles governing Seokbulsa Grotto are the spatial axis of symmetry, modular coordination, and the layout grid of a quarter Tang-Ruler(TR: 唐尺). Dimensional studies were conducted with these governing principles in mind and concludes the following about the original floor plan design. In the main chamber, Ansang-stone's radius is 12 TR, and Flagstone's radius is 12¼ TR. In the front chamber, the width between the two Ansang-stones facing each other is 22 TR and the longitudinal space depth is 12 TR, while the width between the two Flagstones facing each other is 22½ TR and Flagstone's depth is 12 TR. In the passageway, the width between the two Ansang-stones facing each other is 11½ TR and longitudinal space depth is 9 TR, while the width between the two Flagstones facing each other is 12 TR and Flagstone's depth is 7¾ TR. The distance from the center to the entrance line of the main chamber is 10½ TR. Therefore, the total longitudinal length of the Grotto is 43½ TR at the level of the Ansang-stones, and 44 TR at the level of the Flagstones.

진동수주형 파력발전장치 공기챔버의 파력에너지 흡수효율 (Wave Energy Absorption Efficiency of Pneumatic Chamber of OWC Wave Energy Conveter)

  • 홍기용;신승호;홍도천
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.621-625
    • /
    • 2007
  • Oscillating wave amplitude in a bottom-mounted owe chamber designed for wave energy converter is investigated by applying characteristic wave conditions in Korean coastal water. The effects of shape parameters of OWC chamber in a view of wave energy absorbing capability are analyzed. Both experimental and numerical approaches are adopted and their results are compared to optimize the shape parameters which can result in a maximum power production under given wave distribution. The experiment was carried out in a wave flume under 2-D assumption of OWC chamber. In numerical scheme, the potential problem inside the chamber is solved by use of the Green integral equation associated with the Rankine Green function, while outer problem with the Kelvin Green function taking account of fluctuating air pressure in the chamber. Air duct diameter, chamber width, and submerged depths of front skirt and back wall of chamber changes the magnitude and peak frequency of wave absorption significantly.

  • PDF

부분 유공케이슨의 Slit 형상에 따른 반사특성 실험 (Experimental Study for Wave Reflection of Partially Perforated Caisson by Slit Shape of Front Wall)

  • 이종인
    • 대한토목학회논문집
    • /
    • 제33권4호
    • /
    • pp.1455-1462
    • /
    • 2013
  • 본 연구에서는 유공부 형상, 상대유수실 폭, 파형경사 등에 따른 유공케이슨의 소파특성을 2차원 및 3차원 실험을 통해 고찰하였다. 파랑이 직각으로 입사하는 경우, 유사한 유공율 조건에서 횡 slit이 종 slit에 비해 반사계수가 약간 작게 계측되었으나 그 차이는 크지 않았다. 그리고 파형경사가 큰 경우가 작은 경우에 비해 약간 낮은 반사계수를 보였다. 경사 입사파 조건에서도 유공율이 유사할 경우, 유공부 형상에 따른 제체 전면의 파고 차이는 거의 발생하지 않았다.

경사입사파 조건에서 유공벽 전면의 파고분포에 대한 실험:규칙파 조건 (Experiments of Wave Heights in front of a Perforated Wall under Obliquely Incident Waves:Monochromatic Wave Conditions)

  • 이종인;김영택
    • 대한토목학회논문집
    • /
    • 제32권5B호
    • /
    • pp.301-312
    • /
    • 2012
  • 본 연구에서는 규칙파를 대상으로 한 경사입사파 내습시 유공벽 전면에서의 파고분포를 파악하기 위해 평면수조를 이용한 수리실험을 수행하였다. 본 연구는 파랑의 전파특성에 있어 무공벽과 유공벽의 차이점과 유사점에 대해 검토하였으며, 특히 유공벽의 유수실 폭과 유수실내 격벽의 효과에 대해 검토하였다. 제체 전면의 상대파고는 유공벽인 경우와 무공벽인 경우에 매우 큰 차이가 있음을 보였으며, 유수실내 격벽은 연파의 발달을 억제시키는 것으로 나타났다.

SCR 시스템의 요소용액 미립화 및 분해반응 특성 예측에 관한 전산 해석 연구 (A Research on the Characteristics of Spray-Induced Mixing and Thermal Decomposition of Urea Solution in SCR System)

  • 김주연;민병수;하지수;류승협
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권5호
    • /
    • pp.818-826
    • /
    • 2004
  • The spray-induced mixing characteristics and thermal decomposition of aqueous urea solution into ammonia have been studied to design optimum sizes and geometries of the mixing chamber in SCR(Selective Catalytic Reduction) system. The cold flow tests about the urea-injection nozzle were performed to clarify the parameters of spray mixing characteristics such as mean diameter and velocity of drops and spray width determined from the interactions between incoming air and injected drops. Discrete particle model in Fluent code was adopted to simulate spray-induced mixing process and the experimental results on the spray characteristics were used as input data of numerical calculations. The simulation results on the spray-induced mixing were verified by comparing the spray width extracted from the digital images with the simulated Particle tracks of injected drops. The single kinetic model was adopted to predict thermal decomposition of urea solution into ammonia and solved simultaneously along with the verified spray model. The hot air generator was designed to match the flow rate and temperature of the exhaust gas of the real engines The measured ammonia productions in the hot air generator were compared with the numerical predictions and the comparison results showed good agreements. Finally, we concluded that the design capabilities for sizing optimum mixing chamber were established.

Effect of Internal Fluid Resonance on the Performance of a Floating OWC Device

  • Cho, Il Hyoung
    • 한국해양공학회지
    • /
    • 제35권3호
    • /
    • pp.216-228
    • /
    • 2021
  • In the present study, the performance of a floating oscillating water column (OWC) device has been studied in regular waves. The OWC model has the shape of a hollow cylinder. The linear potential theory is assumed, and a matched eigenfunction expansion method(MEEM) is applied for solving the diffraction and radiation problems. The radiation problem involves the radiation of waves by the heaving motion of a floating OWC device and the oscillating pressure in the air chamber. The characteristics of the exciting forces, hydrodynamic forces, flow rate, air pressure in the chamber, and heave motion response are investigated with various system parameters, such as the inner radius, draft of an OWC, and turbine constant. The efficiency of a floating OWC device is estimated in connection with the extracted wave power and capture width. Specifically, the piston-mode resonance in an internal fluid region plays an important role in the performance of a floating OWC device, along with the heave motion resonance. The developed prediction tool will help determine the various design parameters affecting the performance of a floating OWC device in waves.