• Title/Summary/Keyword: Challenge-response protocol

Search Result 32, Processing Time 0.028 seconds

Design of Security-Enhanced RFID Authentication Protocol Based on AES Cipher Algorithm (AES 암호 알고리듬 기반 보안성이 강화된 RFID 인증 프로토콜 설계)

  • Kang, Min-Sup
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.6
    • /
    • pp.83-89
    • /
    • 2012
  • This paper proposes the design of a security-enhanced RFID authentication protocol which meets the privacy protection for tag bearers. The protocol which uses AES(Advanced Encryption Standard) cipher algorithm is based on a three-way challenge response authentication scheme. In addition, three different types of protocol packet formats are also presented by extending the ISO/IEC 18000-3 standard for realizing the security-enhanced authentication mechanism in RFID system environment. Through the comparison of security, it was shown that the proposed scheme has better performance in user data confidentiality, Man-in-the-middle replay attack, and replay attack, and forgery resistance, compared with conventional some protocols. In order to validate the proposed protocol, a digital Codec of RFID tag is also designed based on the protocol. This Codec has been described in Verilog HDL and also synthesized using Xilinx Virtex XCV400E device.

Device Authentication Protocol for Smart Grid Systems Using Homomorphic Hash

  • Kim, Young-Sam;Heo, Joon
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.606-613
    • /
    • 2012
  • In a smart grid environment, data for the usage and control of power are transmitted over an Internet protocol (IP)-based network. This data contains very sensitive information about the user or energy service provider (ESP); hence, measures must be taken to prevent data manipulation. Mutual authentication between devices, which can prevent impersonation attacks by verifying the counterpart's identity, is a necessary process for secure communication. However, it is difficult to apply existing signature-based authentication in a smart grid system because smart meters, a component of such systems, are resource-constrained devices. In this paper, we consider a smart meter and propose an efficient mutual authentication protocol. The proposed protocol uses a matrix-based homomorphic hash that can decrease the amount of computations in a smart meter. To prove this, we analyze the protocol's security and performance.

Design of PUF-Based Encryption Processor and Mutual Authentication Protocol for Low-Cost RFID Authentication (저비용 RFID 인증을 위한 PUF 기반 암호화 프로세서와 상호 인증 프로토콜 설계)

  • Che, Wonseok;Kim, Sungsoo;Kim, Yonghwan;Yun, Taejin;Ahn, Kwangseon;Han, Kijun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.12
    • /
    • pp.831-841
    • /
    • 2014
  • The attacker can access the RFID systems illegally because authentication operation on the RFID systems are performed in wireless communication. Authentication methods based on the PUF were presented to defend attacks. Because of Hash and AES, the cost is expensive for the low-cost RFID tag. In this paper, the PUF-based encryption processor and the mutual authentication protocol are proposed for low-cost RFID authentication. The challenge-response pairs (PUF's input and output) are utilized as the authentication key and encrypted by the PUF's characteristics. The encryption method is changed each session and XOR operation with random number is utilized. Therefore, it is difficult for the attacker to analyze challenge-response pairs and attack the systems. In addition, the proposed method with PUF is strong against physical attacks. And the method protects the tag cloning attack by physical attacks because there is no authentication data in the tag. Proposed processor is implemented at low cost with small footprint and low power.

A Study on Intensified scheme to WLAN Secure based on IEEE 802.1x Framework (IEEE 802.1x 프레임워크 기반에서의 무선랜 보안 강화 방안에 관한 연구)

  • Lee Joon;Hong Seong-pyo;Shin Myeong-sook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.136-141
    • /
    • 2006
  • The IEEE 802.1x can be using various user authentication mechanisms: One-Time Password, Certificate-Based TLS, Challenge/Response and Keberos through EAP(Extended Authentication Protocol). But, IEEE 802.1x also has vulnerabilities about the DoS, the session hijacking and the Man in the Middle attack due to the absence of AP authentication. In this paper, we propose a WLAN secure system which can offer a safety secure communication and a user authentications by intensified the vulnerability of spoofing and DoS attacks. The suppose system offers a safe secure communication because it offers sending message of integrity service and also it prevents DoS attack at authentication initial phase.

The design of User authentication system by using Public key cryptography system and one time password (공개키 암호화 시스템과 일회성 패스워드를 이용한 사용자 인증 시스템 설계)

  • 이상준;김영길
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.498-501
    • /
    • 2002
  • In the process of Log-In to the system, clear User authentication is the beginning of the information protection service. In the open communication system of today, it is true that a password as security instrument and the inner mechanism of the system and cryptography algorithm for the support of this are also poor. For this reason, this dissertation had a final aim to design the user authentication system, which offer the accuracy and safety. It used RSA and CBC mode of DES as cryptography algorithm and used the Challenge-Response scheme at a authentication protocol and designed the User authentication system to which user access using one time password, output of token to guarantee the safety of the authentication protocol. Alto by using the Public key cryptography algorithm, it could embody the more safe User authentication system.

  • PDF

A Storage and Computation Efficient RFID Distance Bounding Protocol (저장 공간 및 연산 효율적인 RFID 경계 결정 프로토콜)

  • Ahn, Hae-Soon;Yoon, Eun-Jun;Bu, Ki-Dong;Nam, In-Gil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9B
    • /
    • pp.1350-1359
    • /
    • 2010
  • Recently many researchers have been proved that general RFID system for proximity authentication is vulnerable to various location-based relay attacks such as distance fraud, mafia fraud and terrorist fraud attacks. The distance-bounding protocol is used to prevent the relay attacks by measuring the round trip time of single challenge-response bit. In 2008, Munilla and Peinado proposed an improved distance-bounding protocol applying void-challenge technique based on Hancke-Kuhn's protocol. Compare with Hancke-Kuhn's protocol, Munilla and Peinado's protocol is more secure because the success probability of an adversary has (5/8)n. However, Munilla and Peinado's protocol is inefficient for low-cost passive RFID tags because it requires large storage space and many hash function computations. Thus, this paper proposes a new RFID distance-bounding protocol for low-cost passive RFID tags that can be reduced the storage space and hash function computations. As a result, the proposed distance-bounding protocol not only can provide both storage space efficiency and computational efficiency, but also can provide strong security against the relay attacks because the adversary's success probability can be reduced by $(5/8)^n$.

A improved authentication protocol for the forward security (개선된 포워드 보안을 위한 인증 프로토콜)

  • Shi, Wenbo;Jang, In-Joo;Yoo, Hyeong-Seon
    • The Journal of Society for e-Business Studies
    • /
    • v.12 no.4
    • /
    • pp.17-27
    • /
    • 2007
  • This paper proposes a key distribution and authentication protocol between user, service provider and key distribution center (KDC). This protocol is based on symmetric cryptosystem, challenge-response, Diffie-Hellman component and hash function. In the proposed protocol, user and server update the session key under token-update operation, and user can process repeated efficient authentications by using updated session keys. And another merit is that KDC needs not to totally control the session key between user and server in proposed protocol. Even an attacker steals the parameters from the KDC, the attacker still can not calculate session key. According to the comparison and analysis with other protocols, our proposed protocol provides good efficiency and forward secure session key.

  • PDF

일회성 티켓을 필요로 하는 사용자에게 동기화된 시계를 요구하지 않는 방식의 Kerberos

  • Kim, Hae-Yeong;Han, Sang-Geun
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.3 no.1
    • /
    • pp.17-29
    • /
    • 1999
  • The reliable authentication of a communicating party and a network component is an essential factor to achieve the security in a computer network. The Kerberos Authentication Services has been the most successful solution which is widely used today but its requirement for synchronized clocks has been a serious limitation to use it. In this paper we presented an extended Kerberos method which avoids the synchronization requirement for a single-time ticket user. We modified the Kerberos protocol minimally by replacing the synchronization requirement with the challenge-response method.

  • PDF

A Lightweight RFID Authentication Protocol Based on Hash Chain (해시체인기반의 경량화 RFID 인증 프로토콜)

  • Youn, Keun-Young;Kim, Dong-Seong;Park, Jong-Sou
    • Convergence Security Journal
    • /
    • v.6 no.1
    • /
    • pp.45-53
    • /
    • 2006
  • It has been proposed that several RFID authentication protocols based on hash chain. Status based authentication protocol and challenge-response based authentication protocol are secured against location tracking attacks, spoofing attacks, replay attacks, traffic analysis attacks but are vulnerable to Dos attacks. RFID authentication protocol with strong resistance against traceability and denial of service attack is secured against location tracking attack, spoofing attacks, replay attacks, DoS attacks but are vulnerable to traffic analysis attacks. The present study suggests a more secure and lightweight RFID authentication protocol which is combining the advantages of hash-chain authentication protocol and RFID authentication protocol with strong resistance against traceability and denial of service attack. The results of the secure analysts for a proposed protocol are illustrated that it is secured against location tracking attacks, spoofing attacks, replay attacks, traffic analysis attacks, Dos attacks and is a lightweight operation between server and tag.

  • PDF

A Design of MILENAGE Algorithm-based Mutual Authentication Protocol for The Protection of Initial Identifier in LTE (LTE 환경에서 초기 식별자를 보호하기 위한 MILENAGE 알고리즘 기반의 상호인증)

  • Yoo, Jae-hoe;Kim, Hyung-uk;Jung, Yong-hoon
    • Journal of Venture Innovation
    • /
    • v.2 no.1
    • /
    • pp.13-21
    • /
    • 2019
  • In LTE environment, which is 4th generation mobile communication systems, there is concern about private information exposure by transmitting initial identifier in plain text. This paper suggest mutual authentication protocol, which uses one-time password utilizing challenge-response and AES-based Milenage key generation algorithm, as solution for safe initial identification communication, preventing unique identification information leaking. Milenage key generation algorithm has been used in LTE Security protocol for generating Cipher key, Integrity key, Message Authentication Code. Performance analysis evaluates the suitability of LTE Security protocol and LTE network by comparing LTE Security protocol with proposed protocol about algorithm operation count and Latency.Thus, this paper figures out initial identification communication's weak points of currently used LTE security protocol and complements in accordance with traditional protocol. So, it can be applied for traditional LTE communication on account of providing additional confidentiality to initial identifier.