• Title/Summary/Keyword: Challenge Model

Search Result 864, Processing Time 0.029 seconds

Elucidation of the Inhibitory Effect of Phytochemicals with Kir6.2 Wild-Type and Mutant Models Associated in Type-1 Diabetes through Molecular Docking Approach

  • Jagadeb, Manaswini;Konkimalla, V. Badireenath;Rath, Surya Narayan;Das, Rohit Pritam
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.283-288
    • /
    • 2014
  • Among all serious diseases globally, diabetes (type 1 and type 2) still poses a major challenge to the world population. Several target proteins have been identified, and the etiology causing diabetes has been reasonably well studied. But, there is still a gap in deciding on the choice of a drug, especially when the target is mutated. Mutations in the KCNJ11 gene, encoding the kir6.2 channel, are reported to be associated with congenital hyperinsulinism, having a major impact in causing type 1 diabetes, and due to the lack of its 3D structure, an attempt has been made to predict the structure of kir6.2, applying fold recognition methods. The current work is intended to investigate the affinity of four phytochemicals namely, curcumin (Curcuma longa), genistein (Genista tinctoria), piperine (Piper nigrum), and pterostilbene (Vitis vinifera) in a normal as well as in a mutant kir6.2 model by adopting a molecular docking methodology. The phytochemicals were docked in both wild and mutated kir6.2 models in two rounds: blind docking followed by ATP-binding pocket-specific docking. From the binding pockets, the common interacting amino acid residues participating strongly within the binding pocket were identified and compared. From the study, we conclude that these phytochemicals have strong affinity in both the normal and mutant kir6.2 model. This work would be helpful for further study of the phytochemicals above for the treatment of type 1 diabetes by targeting the kir6.2 channel.

Assessment of vertical wind loads on lattice framework with application to thunderstorm winds

  • Mara, T.G.;Galsworthy, J.K.;Savory, E.
    • Wind and Structures
    • /
    • v.13 no.5
    • /
    • pp.413-431
    • /
    • 2010
  • The focus of this article is on the assessment of vertical wind vector components and their aerodynamic impact on lattice framework, specifically two distinct sections of a guyed transmission tower. Thunderstorm winds, notably very localized events such as convective downdrafts (including downbursts) and tornadoes, result in a different load on a tower's structural system in terms of magnitude and spatial distribution when compared to horizontal synoptic winds. Findings of previous model-scale experiments are outlined and their results considered for the development of a testing rig that allows for rotation about multiple body axes through a series of wind tunnel tests. Experimental results for the wind loads on two unique experimental models are presented and the difference in behaviour discussed. For a model cross arm with a solidity ratio of approximately 30%, the drag load was increased by 14% when at a pitch angle of $20^{\circ}$. Although the effects of rotation about the vertical body axis, or the traditional 'angle of attack', are recognized by design codes as being significant, provisions for vertical winds are absent from each set of wind loading specifications examined. The inclusion of a factor to relate winds with a vertical component to the horizontal speed is evaluated as a vertical wind factor applicable to load calculations. Member complexity and asymmetric geometry often complicate the use of lattice wind loading provisions, which is a challenge that extends to future studies and codification. Nevertheless, the present work is intended to establish a basis for such studies.

Regularization Method by Subset Selection for Structural Damage Detection (구조손상 탐색을 위한 부 집합 선택에 의한 정규화 방법)

  • Yun, Gun-Jin;Han, Bong-Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.73-82
    • /
    • 2008
  • In this paper, a new regularization method by parameter subset selection method is proposed based on the residual force vector for damage localization. Although subset selection using the fundamental modal characteristics as a residual function has been successful in detecting a single damage location, this method seems to have limited capabilities in the detection of multiple damage locations and typically requires cumbersome weighting values. The method is presented herein and considers cases in which damage detection must be achieved using incomplete measurements of the structural responses. Model expansion is incorporated to deal with this challenge. The unique advantage of employing the new regularization method is that it can reliably identify multiple damage locations. Through an illustrative example, the proposed damage detection method is demonstrated to be a reliable tool for identifying multiple damage locations for a planar truss structure.

Optimal design of car suspension springs by using a response surface method (반응 표면 분석법을 활용한 자동차용 현가스프링 최적화 설계)

  • Yoo, Dong-Woo;Kim, Do-Yeop;Shin, Dong-Gyu
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.246-255
    • /
    • 2016
  • When spring of the suspension is exerted by an external load, a car should be designed to prevent predictable damages and designed for a ride comfort. We used experiments design to design VON-MISES STRESS and K, a constant, of spring of suspension which is installed in a car as a goal level. We analyzed the result from Edison's Elastic - Plastic Analysis SW(CSD_EPLAST) by setting D, d, n as external diameter of coil, internal diameter of coil, the number of total coil respectively. The experiment design let the outcome be as Full-second order by using Box-Behnken which is one of response surface methods. Experimented and analyzed results based on the established experiments design, We found out design parameter which has desired VON-MISES STRESS and the constant K. Additionally, we predicted life time of when the external load was exerted by repeated load by using fatigue equation, and verification of plastic deformation has also been made. Additionally we interpreted a model, which is formed by optimized design parameter, with linear analysis and non-linear analysis, at the same time we also analyzed plastic deformation with the values from the both models. Finally, we predicted fatigue life of optimized model by using fatigue estimation theory and also evaluated a ride comfort with oscillation analysis.

  • PDF

Endpoint Detection Using Hybrid Algorithm of PLS and SVM (PLS와 SVM복합 알고리즘을 이용한 식각 종료점 검출)

  • Lee, Yun-Keun;Han, Yi-Seul;Hong, Sang-Jeen;Han, Seung-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.9
    • /
    • pp.701-709
    • /
    • 2011
  • In semiconductor wafer fabrication, etching is one of the most critical processes, by which a material layer is selectively removed. Because of difficulty to correct a mistake caused by over etching, it is critical that etch should be performed correctly. This paper proposes a new approach for etch endpoint detection of small open area wafers. The traditional endpoint detection technique uses a few manually selected wavelengths, which are adequate for large open areas. As the integrated circuit devices continue to shrink in geometry and increase in device density, detecting the endpoint for small open areas presents a serious challenge to process engineers. In this work, a high-resolution optical emission spectroscopy (OES) sensor is used to provide the necessary sensitivity for detecting subtle endpoint signal. Partial Least Squares (PLS) method is used to analyze the OES data which reduces dimension of the data and increases gap between classes. Support Vector Machine (SVM) is employed to detect endpoint using the data after PLS. SVM classifies normal etching state and after endpoint state. Two data sets from OES are used in training PLS and SVM. The other data sets are used to test the performance of the model. The results show that the trained PLS and SVM hybrid algorithm model detects endpoint accurately.

A study onthe modeling of broadband access network for national information infrastructure and numerical analysis of its economics (초고속 액세스 망의 모델화 및 경제성에 대한 검토)

  • 정해원;박기식;노장래;조성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.12
    • /
    • pp.2806-2818
    • /
    • 1997
  • It is generallyaccepted that broadband access technologies will play an important role in the National Information Infrastructure. However, the provision of direct fibers to residential and small business customers has always been considered a challenge. To accelerage the provision of Broadband Access Facilities, alternatibe paths could be identified and actaivated in parallel. In this paepr, we present an overview of the alternative access technologies focusing on xDSL, FTTx, HFC, HFR, and suggest the modeling of the access netetwork systems which is using of the technologies. Also to investigate the economics of each access systems, we derve the numerical equations which is summed up the al parameter including the labor cost of the model system. The proposed equation has a variable which is the cell size (or subsciber clusters) and calculate the real cost values which is normalized by the copper cable unit cost. From the numerical resutls, we conclude that the economic access method to provide these broadband capabilities is depended on the subscriber penetration, the patterns of subscriber distribution density and existing communication infrastructures. It can be expected that our analytical model and equations provides an elegant solution to choose the optimal broadband access technologies to residential and small business customers.

  • PDF

Effects of Gami-Choakwiyeum on the PPAR-${\gamma}$ in the Bronchial sthma Mouse Model (천식 쥐 모델에서 가마좌귀음이 PPAR-${\gamma}$에 미치는 영향)

  • Lee, Hai-Ja
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.6
    • /
    • pp.1593-1597
    • /
    • 2006
  • We hope to evaluate the effects of Gami-Choakwiyeum (GCKY) on the PPAR-${\gamma}$’ in the OVA induced asthma mouse model. Female BALB/c mice, 8 weeks of age and free of murine specific pathogens were used. Mice were sensitized by intraperitoneal injection of OVA emulsified in aluminum hydroxide in a total volume of 200 ${\mu}{\ell}$ on one day and 14 days. On 21, 22, and 23 days after the initial intraperitoneal injection of OVA, the mice were challenged using an ultrasonic nebulizer. GCKY was administered 7 times by oral gavage at 24 hour intervals fromdays 19 after intraperitoneal injection of OVA. Bronchoalveolar lavage was perfromed 72 hours after the last challenge, and total cell numbers in the BAL fluid were counted. Also, the level of PPAR-${\gamma}$ of normal and OVA-induced asthma moused with/without administration of GCKY were measured by Western blot analysis. For the histologic examination, the specimens were stained with hematoxylin 2 and eosin-Y.(H & E). Numbers of total cells were increased significantly at 72 h after OVA inhalation compared with numbers of total cells in the normal and the administration of GCKY. Especially, the increased numbers of eosinophils in BAL fluids after OVA inhalation were significantly increased. However, the numbers of eosinophils reduced by the administration of GCKY. Western blot analysis revealed that PPAR-${\gamma}$ levels in nuclear level were increased slightly after OVA inhalation compared with the levels in the normal group. After the administration of GCKY, PPAR-${\gamma}$ levels in cytosolic and nuclear levels at 72 h after OVA inhalation were markedly increased. On pathologic examination, there were many acute inflammatory cells around the alveoli, bronchioles, and airway lumen of mice with OVA-induced asthma compared with inflammatory cells in the normal group. However, acute inflammatory cells around alveoli, bronchioles, and airway lumen markedly decreased after administration of GCKY, GCKY can increase a PPAR-${\gamma}$ level and could be an effective treatment in asthma patients through the PPAR-${\gamma}$ mechanism for bronchial asthma.

Behaviour and design of guyed pre-stressed concrete poles under downbursts

  • Ibrahim, Ahmed M.;El Damatty, Ashraf A.
    • Wind and Structures
    • /
    • v.29 no.5
    • /
    • pp.339-359
    • /
    • 2019
  • Pre-stressed concrete poles are among the supporting systems used to support transmission lines. It is essential to protect transmission line systems from harsh environmental attacks such as downburst wind events. Typically, these poles are designed to resist synoptic wind loading as current codes do not address high wind events in the form of downbursts. In the current study, the behavior of guyed pre-stressed concrete Transmission lines is studied under downburst loads. To the best of the authors' knowledge, this study is the first investigation to assess the behaviour of guyed pre-stressed concrete poles under downburst events. Due to the localized nature of those events, identifying the critical locations and parameters leading to peak forces on the poles is a challenging task. To overcome this challenge, an in-house built numerical model is developed incorporating the following: (1) a three-dimensional downburst wind field previously developed and validated using computational fluid dynamics simulations; (2) a computationally efficient analytical technique previously developed and validated to predict the non-linear behaviour of the conductors including the effects of the pretension force, sagging, insulator's stiffness and the non-uniform distribution of wind loads, and (3) a non-linear finite element model utilized to simulate the structural behaviour of the guyed pre-stressed concrete pole considering material nonlinearity. A parametric study is conducted by varying the downbursts locations relative to the guyed pole while considering three different span values. The results of this parametric study are utilized to identify critical downburst configurations leading to peak straining actions on the pole and the guys. This is followed by comparing the obtained critical load cases to new load cases proposed to ASCE-74 loading committee. A non-linear failure analysis is then conducted for the three considered guyed pre-stressed concrete transmission line systems to determine the downburst jet velocity at which the pole systems fail.

Experimental investigation on a freestanding bridge tower under wind and wave loads

  • Bai, Xiaodong;Guo, Anxin;Liu, Hao;Chen, Wenli;Liu, Gao;Liu, Tianchen;Chen, Shangyou;Li, Hui
    • Structural Engineering and Mechanics
    • /
    • v.57 no.5
    • /
    • pp.951-968
    • /
    • 2016
  • Long-span cross-strait bridges extending into deep-sea waters are exposed to complex marine environments. During the construction stage, the flexible freestanding bridge towers are more vulnerable to environmental loads imposed by wind and wave loads. This paper presents an experimental investigation on the dynamic responses of a 389-m-high freestanding bridge tower model in a test facility with a wind tunnel and a wave flume. An elastic bridge model with a geometric scale of 1:150 was designed based on Froude similarity and was tested under wind-only, wave-only and wind-wave combined conditions. The dynamic responses obtained from the tests indicate that large deformation under resonant sea states could be a structural challenge. The dominant role of the wind loads and the wave loads change according to the sea states. The joint wind and wave loads have complex effects on the dynamic responses of the structure, depending on the approaching direction angle and the fluid-induced vibration mechanisms of the waves and wind.

Sec-O-glucosylhamaudol mitigates inflammatory processes and autophagy via p38/JNK MAPK signaling in a rat neuropathic pain model

  • Oh, Seon Hee;Kim, Suk Whee;Kim, Dong Joon;Kim, Sang Hun;Lim, Kyung Joon;Lee, Kichang;Jung, Ki Tae
    • The Korean Journal of Pain
    • /
    • v.34 no.4
    • /
    • pp.405-416
    • /
    • 2021
  • Background: This study investigated the effect of intrathecal Sec-O-glucosylhamaudol (SOG) on the p38/c-Jun N-terminal kinase (JNK) signaling pathways, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-related inflammatory responses, and autophagy in a spinal nerve ligation (SNL)-induced neuropathic pain model. Methods: The continuous administration of intrathecal SOG via an osmotic pump was performed on male Sprague-Dawley rats (n = 50) with SNL-induced neuropathic pain. Rats were randomized into four groups after the 7th day following SNL and treated for 2 weeks as follows (each n = 10): Group S, sham-operated; Group D, 70% dimethylsulfoxide; Group SOG96, SOG at 96 ㎍/day; and Group SOG192, SOG at 192 ㎍/day. The paw withdrawal threshold (PWT) test was performed to assess neuropathic pain. Western blotting of the spinal cord (L5) was performed to measure changes in the expression of signaling pathway components, cytokines, and autophagy. Additional studies with naloxone challenge (n = 10) and cells were carried out to evaluate the potential mechanisms underlying the effects of SOG. Results: Continuous intrathecal SOG administration increased the PWT with p38/JNK mitogen-activated protein kinase (MAPK) pathway and NF-κB signaling pathway inhibition, which induced a reduction in proinflammatory cytokines with the concomitant downregulation of autophagy. Conclusions: SOG alleviates mechanical allodynia, and its mechanism is thought to be related to the regulation of p38/JNK MAPK and NF-κB signaling pathways, associated with autophagy during neuroinflammatory processes after SNL.