• Title/Summary/Keyword: Chain complexes

Search Result 103, Processing Time 0.022 seconds

Fabrication and Characterization of Dye-sensitized Solar Cells based on Anodic Titanium Oxide Nanotube Arrays Sensitized with Heteroleptic Ruthenium Dyes

  • Shen, Chien-Hung;Chang, Yu-Cheng;Wu, Po-Ting;Diau, Eric Wei-Guang
    • Rapid Communication in Photoscience
    • /
    • v.3 no.1
    • /
    • pp.16-19
    • /
    • 2014
  • Anodic self-organized titania nanotube (TNT) arrays have a great potential as efficient electron-transport materials for dye-sensitized solar cells (DSSC). Herewith we report the photovoltaic and kinetic investigations for a series of heteroleptic ruthenium complexes (RD16-RD18) sensitized on TNT films for DSSC applications. We found that the RD16 device had an enhanced short-circuit current density ($J_{SC}/mAcm^{-2}=15.0$) and an efficiency of power conversion (${\eta}=7.2%$) greater than that of a N719 device (${\eta}=7.1%$) due to the increasing light-harvesting and the broadened spectral features with thiophene-based ligands. However, the device made of RD17 (adding one more hexyl chain) showed smaller $J_{SC}(14.1mAcm^{-2})$ and poorer ${\eta}(6.8%)$ compare to those of RD16 due to smaller amount of dye-loading and less efficient electron injection for the RD17 device than for the RD16 device. For the RD18 dye (adding one more thiophene unit and one more hexyl chain), we found that the device showed even lower $J_{SC}(13.2mAcm^{-2}) $ that led to a poorest device performance (${\eta}=6.2%$) for the RD18 device. These results are against to those obtained from the same dyes sensitized on $TiO_2$ nanoparticle films and they can be rationalized according to the electron transport kinetics measured using the methods of charge extraction and transient photovoltage decays.

A Combination Strategy for Construction of Peptide-β2m-H-2Kb Single Chain with Overlap Extension PCR and One-Step Cloning

  • Xu, Tao;Li, Xiaoe;Wu, You;Shahzad, Khawar Ali;Wang, Wei;Zhang, Lei;Shen, Chuanlai
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2184-2191
    • /
    • 2016
  • The time-consuming and high-cost preparation of soluble peptide-major histocompatibility complexes (pMHC) currently limits their wide uses in monitoring antigen-specific T cells. The single-chain trimer (SCT) of peptide-${\beta}2m$-MHC class I heavy chain was developed as an alternative strategy, but its gene fusion is hindered in many cases owing to the incompatibility between the multiple restriction enzymes and the restriction endonuclease sites of plasmid vectors. In this study, overlap extension PCR and one-step cloning were adopted to overcome this restriction. The SCT gene of the $OVA_{257-264}$ peptide-$(GS_4)_3-{\beta}2m-(GS_4)_4-H-2K^b$ heavy chain was constructed and inserted into plasmid pET28a by overlap extension PCR and one-step cloning, without the requirement of restriction enzymes. The SCT protein was expressed in Escherichia coli, and then purified and refolded. The resulting $H-2K^b/OVA_{257-264}$ complex showed the correct structural conformation and capability to bind with $OVA_{257-264}$-specific T-cell receptor. The overlap extension PCR and one-step cloning ensure the construction of single-chain MHC class I molecules associated with random epitopes, and will facilitate the preparation of soluble pMHC multimers.

Unusual Facilitated Olefin Transport through Polymethacrylate/Silver Salt Complexes

  • Kim, Jong-Hak;Joo, Seung-Hwan;Kim, Chang-Kon;Kang, Yong-Soo;Jongok Won
    • Macromolecular Research
    • /
    • v.11 no.5
    • /
    • pp.375-381
    • /
    • 2003
  • Silver salt complex membranes with glassy poly(methyl methacrylate) (PMMA) unexpectedly showed higher propylene permeance than those with rubbery poly(butyl methacrylate) (PBMA) where as neat PMMA is much less permeable to propylene than that of neat PBMA. Such unusual facilitated olefin transport has been systematically investigated by changing the side chain length of polymethacrylates (PMAs) from methyl, ethyl to butyl. The ab initio calculation showed almost the same electron densities of the carbonyl oxygens in the three PMAs, expecting very similar intensity of the interaction between carbonyl oxygen and silver ion. However, the interaction intensity decreases with the length of the alkyl side chain: PMMA > PEMA > PBMA according to wide angle X-ray scattering and FT-Raman spectroscopy. The difference in the interaction intensity may arise from the difference in the hydrophilicity of the three PMAs, as confirmed by the contact angle of water, which determines the concentrations of the ionic constituents of silver salts: free ion, contact ion pair and higher order ionic aggregate. However, propylene solubilities and facilitated propylene transport vary with the side chain length significantly even at the same concentration of the free ion, the most active olefin carrier, suggesting possible difference in the prohibition of the molecular access of propylene to silver ion by the side chains: the steric hindrance. Therefore, it may be concluded that both the hydrophilicity and the steric hindrance associated with the side chain length in the three PMAs are of pivotal importance in determining facilitated olefin transport through polymer/silver salt complex membranes.

Structural Studies of Copper(II)-Hippuryl-L-histidyl-L-leucine(HHL) Complex by NMR Methods

  • Lee Seong-Ran;Jun Ji-Hyun;Won Ho-Shik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.10 no.1
    • /
    • pp.115-125
    • /
    • 2006
  • Hippuryl-L-histidyl-L-leucine(HHL) is widely used as a substrate of angiotensin converting enzyme(ACE) cleaving the neurotransmitter angiotensin(I) to the octapeptide angiotensin(II). The structure of the substrate molecules should provide information regarding the geometric requirements of the ACE active site. For the purpose of determination of in vivo reaction, metallo(Cu, Zn)-HHL complexes were synthesized and the degree of complex formation were identified by MALDITOF, ESI mass spectrometric analysis. Tn addition, the pH-dependent species distribution curves were obtained by potentiometric titration. Nitrogen atoms of imidazole ring and oxygen atom of caboxylate groups in the peptide chain were observed to be participated in the metal complex formation. After purification of complexes further structural characterization were made by utilizing UV-Vis, electrochemical methods and NMR. Complete NMR signal assignments were carried out by using 2D-spectrum techniques COSY, TOCSY, NOESY, HETCOR. A complex that two imidazole and carboxylate groups are asymmetrically participating to coordination mode was predicted to the solution-state structure of $Cu(II)-HHL_2$ based on $^{13}C-NMR$ signal assignment and NOE information.

  • PDF

Hydrothermal Synthesis, Crystal Structures and Properties of Zinc(II) Di-nuclear Complex and Copper(I) Coordination Polymer Based on Building Block 2-Phenyl-4,6-di(pyridin-2-yl)pyrimidine

  • Zhao, Pusu;Jing, Wang;Jing, Long;Jian, Fangfang;Li, Yufeng
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3743-3748
    • /
    • 2013
  • A tetradentate ligand of 2-phenyl-4,6-di(pyridin-2-yl)pyrimidine (L) has been synthesized and its complexes with $ZnI_2$ and CuI have been obtained by hydrothermal method. single crystal X-ray diffraction analysis indicates that ligand L coordinates with Zn(II) ions to form a simple four-coordinate di-nuclear complex, while the complexation of L with Cu(I) constructs a one-dimensional chain polymer. The existence of $I^-$ ion hampers the L to assemble grid-type complexes with Zn(II) and Cu(I). Fluorescence spectra show that the L emits blue fluorescence while its Cu(I) polymer decrease the fluorescence intensity and Zn(II) complex quenches the fluorescence.

One-Pot Synthesis, Crystal Structures and Thermal Properties of Two Three-Dimensional Cobalt(II) Complexes

  • Tao, Bo;Lei, Wen;Cheng, Feiran;Xia, Hua
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1929-1933
    • /
    • 2012
  • Two cobalt(II) compounds $[Co(2,2{^\prime}-bipy)(H_2O)_2(SO_4)]_n$ (1) and $[Co_2(2,2^{\prime}-bipy)_2(btec)(H_2O)_6]{\cdot}2H_2O$ (2) (2,2'-bipy = 2,2'-bipyridine, $H_4btec$ = 1,2,4,5-benzenetetracarboxylic acid), have been simultaneously synthesized by a one-pot slow solvent evaporation reaction. Their structures were determined by single-crystal X-ray diffraction and further characterized by X-ray powder diffraction (XRPD), IR, elemental and thermogravimetric analysis (TGA). The structural analysis reveals that compound 1 exhibits an infinite 1D chain structure with the octahedral Co(II) centers bridging by the tetrahedral ${\mu}_2-SO{_4}^{2-}$ ligands, while compound 2 possesses a dinuclear $Co_2(2,2^{\prime}-bipy)_2(btec)(H_2O)_6$ unit and the two adjacent octahedral Co(II) ions are linked by the bismonodentately coordinated btec ligand. Additionally, compound 2 exhibits blue fluorescent emission in the solid state at room temperature.

Growth Performance and Post-Weaning Diarrhea in Piglets Fed a Diet Supplemented with Probiotic Complexes

  • Lu, Xuhong;Zhang, Ming;Zhao, Liang;Ge, Keshan;Wang, Zongyi;Jun, Luo;Ren, Fazheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.11
    • /
    • pp.1791-1799
    • /
    • 2018
  • Weaning stress can affect the growth performance and intestinal health of piglets. Dietary alternatives to antibiotics, such as dietary probiotics, especially those containing multiple microbial species, are a preventive strategy for effectively controlling post-weaning diarrhea. In this study, we investigated forty-eight crossbred piglets in three treatment groups for 21 days: the control and experimental groups were supplemented with Enterococcus faecium DSM 7134, Bacillus subtilis AS1.836 plus Saccharomyces cerevisiae ATCC 28338 (EBS) or Lactobacillus paracasei L9 CGMCC No. 9800 (EBL). On day 21, weaned piglets supplemented with two kinds of probiotic complexes showed increased growth performance and significantly reduced post-weaning diarrhea (p < 0.05). The EBS treatment increased acetic acid and propionic acid in the feces (p < 0.05), and the EBL treatment increased fecal acetic acid, propionic acid, butyrate and valerate (p < 0.05). Moreover, the fecal microbiota of the piglets changed markedly in EBL treatment. The addition of EBS and EBL may have similar effects on the prevention of diarrhea by improving the intestinal morphology and regulating the microbiota during the weaning period.

Assessment of Selected Heavy Metal Concentrations in Agricultural Soils around Industrial Complexes in Southwestern Areas of Korea

  • Kim, Dong-Jin;Park, Jung-Hwon;Lee, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.524-530
    • /
    • 2016
  • Agricultural soils near or around industrial complexes can contain a certain amount of heavy metals that readily enter the food chain and negatively affect human health. Therefore, we conducted the study to investigate the distribution of selected heavy metals, including arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), lead (Pb), mercury (Hg), and zinc (Zn), in farm-land soils around fifteen industrial complexes in the southwestern provinces, Korea. The concentrations of heavy metals in the soil samples were determined by the pseudo-total aqua regia (3 HCl : $1HNO_3$) digestion procedure. The heavy metal concentrations in most soils examined did not exceed the levels of Soil Contamination Warning Standard (SCWS) for agricultural lands (Region 1) presented in Soil Environment Conservation Law (SECL) established by Ministry of Environment (MOE), Korea. However, only one sampling site showed higher As amount ($27.1mg\;kg^{-1}$) than the SCWS level of As ($25mg\;kg^{-1}$). Pollution index (PI) for heavy metals did not exceed 1.0. The PI values were significantly positively correlated (p < 0.01) with the heavy metal concentrations. In particular, the values of correlation coefficient between the Cd and Pb concentrations and the PI values were higher than those estimated from other combinations, and thus the amounts of Cd and Pb in the agricultural soils highly affected the PI values for the heavy metals.

N-Acetyl-D-Glucosamine Kinase Interacts with Dynein-Lis1-NudE1 Complex and Regulates Cell Division

  • Sharif, Syeda Ridita;Islam, Md. Ariful;Moon, Il Soo
    • Molecules and Cells
    • /
    • v.39 no.9
    • /
    • pp.669-679
    • /
    • 2016
  • N-acetyl-D-glucosamine kinase (GlcNAc kinase or NAGK) primarily catalyzes phosphoryl transfer to GlcNAc during amino sugar metabolism. Recently, it was shown NAGK interacts with dynein light chain roadblock type 1 (DYNLRB1) and upregulates axo-dendritic growth, which is an enzyme activity-independent, non-canonical structural role. The authors examined the distributions of NAGK and NAGK-dynein complexes during the cell cycle in HEK293T cells. NAGK was expressed throughout different stages of cell division and immunocytochemistry (ICC) showed NAGK was localized at nuclear envelope, spindle microtubules (MTs), and kinetochores (KTs). A proximity ligation assay (PLA) for NAGK and DYNLRB1 revealed NAGK-dynein complex on nuclear envelopes in prophase cells and on chromosomes in metaphase cells. NAGK-DYNLRB1 PLA followed by Lis1/NudE1 immunostaining showed NAGK-dynein complexes were colocalized with Lis1 and NudE1 signals, and PLA for NAGK-Lis1 showed similar signal patterns, suggesting a functional link between NAGK and dynein-Lis1 complex. Subsequently, NAGK-dynein complexes were found in KTs and on nuclear membranes where KTs were marked with CENP-B ICC and nuclear membrane with lamin ICC. Furthermore, knockdown of NAGK by small hairpin (sh) RNA was found to delay cell division. These results indicate that the NAGK-dynein interaction with the involvements of Lis1 and NudE1 plays an important role in prophase nuclear envelope breakdown (NEB) and metaphase MT-KT attachment during eukaryotic cell division.

Self-assembly Coordination Compounds of Cu(II), Zn(II) and Ag(I) with btp Ligands (btp = 2,6-bis(N'-1,2,4-triazolyl)pyridine):Counteranion Effects

  • Kim, Cheal;Kim, Sung-Jin;Kim, Young-Mee
    • Korean Journal of Crystallography
    • /
    • v.16 no.2
    • /
    • pp.107-127
    • /
    • 2005
  • Five Cu(II) compounds were obtained from different copper salts with btp ligands, and their structures were determined by X-ray crystallography. The structure of coordination polymer 2 contains btp-bridged tetranuclear Cu(II) units weakly connected by nitrate ions, and the structure of a discrete Cu(II) molecule 1 contains acetates and btp ligands. With perchlorate anions, two btp ligands bridge Cu(II) ions to form a double zigzag chain 3, while a single zigzag chain 4 is created with sulfate anions. The reaction of $Cu(NO_{3})_{2}$ containing $NH_{4}PF_{6}$ with btp ligands also produced a polymeric compound 5 containing $Cu(H_{2}O)_{2}^{2+}$ and $Cu(NO_{3})_{2}$ units alternatively bridged by btp ligands with H-bonds between copper bonded water and nitrate oxygen atoms. Five Zn(II) compounds were obtained from different zinc salts with btp ligands, and the structures of polymeric compounds (6, 7 and 8) and monomeric compounds (9 and 10) were determined by X-ray crystallography. With nitrate, chloride and bromide anions, btp ligands bridge Zn(II) ions to form polymeric compounds (6, 7 and 8), but btp ligands coordinate to a Zn(II) ion to form monomeric complexes (9 and 10) with $PF_{6}^{-}$ and perchlorate anions. Four silver salts and btp ligands produced two kinds of structures, dinuclear 20-membered rings and one-dimensional zigzag chain depending on different anions. For $ClO_{4}^{-}$ and OTf anions, weak interactions between Ag(I) and anions make dinuclear 20-membered rings construct polymeric compounds (11 and 13). For $PF_{6}^{-}$ anion, there are also weak interactions between Ag(I) and $F(PF_{6}^{-})(12)$, but they do not construct a polymeric compound. For $O_{2}CCF_{3}^{-}$ anion, btp ligands bridge Ag(I) atoms to make one-dimensional zigzag chain (14), and there are also interactions between Ag(I) and anions.