• Title/Summary/Keyword: Chaetognaths

Search Result 20, Processing Time 0.02 seconds

Variations of Marine Environments and Zooplankton Biomass in the Yellow Sea During the Past Four Decades (우리나라 서해에서의 해양환경변화와 동물부유생물의 장기간의 출현량 변화)

  • Choi, Jung-Wha;Park, Won-Gyu
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.25 no.5
    • /
    • pp.1046-1054
    • /
    • 2013
  • Spatial and temporal variations of sea surface temperature (SST), abundances of copepods, euphausiids, amphipods, and chaetognaths were investigated in the western waters of the Korean Peninsula. Zooplankton and SST were monitored at 63 stations arrayed in six transects ($124^{\circ}00^{\prime}-126^{\circ}30^{\prime}E$, $34^{\circ}00^{\prime}-37^{\circ}00^{\prime}N$) in February, April, June, August, October, and December during 1978-2010. In general, SST increased $0.7-3.8^{\circ}C$ during the last three decades with spatio-temporal variations. SST was lowest in February and highest in August. SST was highest in the northernmost transect and declined gradually along transects to the south. The general pattern of interannual variations of SST was similar to the global pattern, which has been increasing. Trends of abundances of all zooplankton groups slightly increased interannually and peaked seasonally in June and August, except chaetognaths, which fluctuated around the long-term mean value with a seasonal peak in August and October. Abundances of zooplankton groups were highest in the northernmost transect while those of euphausiids were highest in the southern transect. We discuss the distribution patterns of SST and zooplankton groups in relation to oceanographic characteristics in the study area.

The Distribution of Chaetognaths in the Korea Strait and Their Relation to the Character of Water Masses (대한해협의 부유성 모악류의 수직분포와 수괴 유동)

  • Park, Joo-suck
    • 한국해양학회지
    • /
    • v.8 no.1
    • /
    • pp.22-32
    • /
    • 1973
  • Based on the plankton samples collected in the Korea Strait in 1972, a study was conducted on the vertical distribution of chaetognaths in relation to water masses in th Strait. The settling volume of total plankton collected in the Strait ranged from 0.3 to 5 cc/10㎥ and showed a distinctive variation in the vertical distribution between day and night. The large amount of volume was found in the upper layer at night and deeper layer during the day time collections. A total of 19 species and one forma of chaetognaths were identified from the present samples. In general, the number of species and individuals of chaetognaths were abundant in the upper layer. But in August they were distributed almost evenly from the surface to the bottom layer. Particularly several species of warm water chaetognaths, i. e., Sagitta enflata and S. regularis appeared abundantly in the deeper layer in summer. This indicates a sinking phenomenon of warm water from the surface to the bottom layer. As for the vertical distribution of S.elegans, a cold water species, in the Korean Strait, it is restricted only to the bottom layer except in the region of upwelling where they appear in the middle layer. This species is usually distributed in the depth of below 150m in the southern part of Japan Sea(Park, 1970), and it is usually distributed as far south as the Strait between Busan and Tsushima. In addtion, cold water species of copepods such as Pseudocalanus minutus and Metridialucens appear in the western side of Thushima. As indicated by the vertical and horizontal distribution of S. elegans in the Strait, the cold water flows as an undercurrent along the bottom from the southern part of the Japan Sea to the Korea Strait between Busan and Thushima in summer and fall, with a trend of uprising along the coast of Korea. S. decipiens has been found only in the depth of below 50m except in the coastal area where they appear in the upper layer. Therefore the vertical distribution of this species can be used for tracing the occurrence of upwelling and the movement of water from the middle layer.

  • PDF

Food-Web Structures in the Lower Trophic Levels of the Korean Seas (East Sea, West Sea, South Sea, and East China Sea) during the Summer Season: Using Carbon and Nitrogen Stable Isotopes (하계 한반도 해역(동해, 서해, 남해 및 동중국해)의 하위영양단계 먹이망 구조 : 탄소 및 질소 안정동위원소 활용)

  • Min, Jun-Oh;Lee, Chang-Hwa;Youn, Seok-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.493-505
    • /
    • 2020
  • Food web structures in the lower trophic levels of the seas around the Korean peninsula were investigated in August 2019 using stable isotopes. There were variable ratios of the carbon (-26.18 ~ -20.61 ‰) and nitrogen stable (5.36 ~ 15.20 ‰) isotopes in the particulate organic matter (POM). Most of the organisms ingested micro-POM as a major food source, but this varied spatially. The chaetognaths (3.40 ± 0.61) occupied the highest trophic level. The isotope mixing model showed that the proportions (13 ~ 51 %) of some organisms (i.e., copepods and euphausiids) reflected the relative contributions as major food sources for chaetognaths at each site.

Seasonal Variation in Zooplankton Related to North Pacific Regime Shift in Korea Sea (북태평양체제전환 (North Pacific Regime Shifts)과 한반도 주변해역 동물플랑크톤 계절주기 변동 특성)

  • Kang, Young-Shil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.41 no.6
    • /
    • pp.493-504
    • /
    • 2008
  • In the seas around the Korean Peninsula, the seasonal cycle of zooplankton related to North Pacific regime shifts was investigated to understand the reaction of the ecosystem to climate change using long-term data on zooplankton biomass (1965-2000) and the abundance of four major zooplankton groups: copepods, amphipods, chaetognaths, and euphausiids (1978-2000). In general, the zooplankton biomass showed a large peak in spring and a small peak in autumnin Korean waters, but there was a slight difference in the peak time depending on the location and the period before and after the North Pacific regime shift. The zooplankton biomass showed conspicuous seasonal peaks in R-III (1990-2000) compared to R-I (1965-1976) and R-II (1977-1988), and the seasonal peak shifted from the autumn in R-II to the spring in R-III. The peak of copepods and euphausiids in abundance was from April to June, while chaetognaths peaked from August to October. We postulate that the time lag between the peaks for copepods and chaetognaths results from the predator-prey relationship. The regime shift in 1989 did not alter the seasonal cycle of the four major zooplankton groups, although it enhanced their production. The seasonal peaks of the four major zooplankton groups did not shift, while the seasonal peaks of the zooplankton biomass did shift. This was not only becausethe zooplankton biomass included other mesozooplankton groups but also because the abundance of the four major zooplankton groups increased significantly in spring.

Feeding Habits of Hairtail, Trichiurus lepturus (갈치 (Trichiurus lepturus)의 식성)

  • Huh, Sung-Hoi
    • Korean Journal of Ichthyology
    • /
    • v.11 no.2
    • /
    • pp.191-197
    • /
    • 1999
  • Stomach contents of hairtail, Trichiurus lepturus collected in the Nakdong River Estuary were examined quantitatively. T. lepturus was a carnivore which consumed mainly fishes, crustaceans (such as copepods, euphausiids and shrimps) and chaetognaths. Its diets included small quantities of small squids. T. lepturus showed ontogenetic progression of three feeding stages : an initial feeding stage was a planktivorous stage in which copepods were the major food item, followed by a mixed feeding stage in which euphausiids, mysids, shrimps, chaetognaths and fishes were the major food items, and finally a piscivorous stage in which fishes were the major food item. Especially anchovies were heavily selected by large T. lepturus.

  • PDF

Diet of Chaetognaths Sagitta crassa and S. nagae in the Yellow Sea Inferred from Gut Content and Fatty Acid Analyses (위 내용물 및 지방산 구성을 통한 황해 모악류(Sagitta crassa와 S. nagae)의 먹이 섭식 특성)

  • Yoon, Hyunjin;Ko, Ah-Ra;Kang, Jung-Hoon;Choi, Joong Ki;Ju, Se-Jong
    • Ocean and Polar Research
    • /
    • v.38 no.1
    • /
    • pp.35-46
    • /
    • 2016
  • To understand the diet of chaetognaths, the gut content and fatty acid trophic makers (FATMs) of Sagitta crassa and S. nagae, which are the most predominant species of chaetognath in the Yellow Sea, were analyzed. Gut contents of the two species examined by microscopic analysis revealed that copepods are the major components of the diet (> 70% of gut contents) and there was no significant changes in the gut contents of two species collected in spring and summer season. Although 16:0, 20:5(n-3) (Eicosapentaenoic acid) and 22:6(n-3) (Docosahexanoic acid), which are known as phytoplankton FA markers, were the most dominant among the fatty acids in both chaetognath species, the detection of copepod FA markers, 20:1(n-9) (Gadoleic acid) and 22:1(n-11) (Cetoleic acid), provided evidence that their food sources include copepods. These results suggest that S. crassa and S. nagae are carnivores and mainly feed on copepods in the Yellow Sea.

Latitudinal Differences in the Distribution of Mesozooplankton in the Northeastern Equatorial Pacific

  • Kang, Jung-Hoon;Kim, Woong-Seo;Son, Seung-Kyu
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.351-360
    • /
    • 2004
  • To investigate latitudinal variations in the zooplankton community along the meridian line ($5^{\circ}N-12^{\circ}N$, $131.5^{\circ}W$), we measured temperature, salinity, nitrate, chlorophyll-a and zooplankton at depths above 200 m from July $10^{th}$ to $25^{th}$, 2003. For comparative analysis, data of the physico-chemical properties and chl-a were matched to the two sampling depths (surface mixed layer and thermocline depth-200 m) of zooplankton. Latitudinal differences in the mesozooplankton distribution were mainly influenced by divergence formed at a boundary line formed by currents of opposing directions, consisting of North Equatorial Current (NEC) and North Equatorial Counter Current (NECC). High concentrations of chl-a south of $9^{\circ}N$, caused by equatorial upwelling related nutrients, is thought to be affected by the role of this divergence barrier, supported by relatively low concentrations in waters north of $9^{\circ}N$. The latitudinal differences of the chl-a were significantly associated with the major groups of zooplankton, namely calanoid and cyclopoid copepods, appendicularians, ostracods, chaetognaths, invertebrate larvae, and others. And temperature significantly affected the latitudinal variation of radiolarians, siphonophores, salps and immature copepods. The latitudinal differences in the two factors, temperature and chl-a, which explained 71.0% of the total zooplankton variation, were characterized by the equatorial upwelling as well as the divergence at $9^{\circ}N$. The physical characteristics also affected the community structure and abundance of zooplankton as well as average ratios of cyclopoid versus calanoid copepods. The abundance of dominant copepods, which were consistent with chl-a, were often associated with the carnivorous zooplankton chaetognaths, implying the relative importance of bottom-up regulation from physical properties to predatory zooplankton during the study period. These results suggested that latitudinal distribution of zooplankton is primarily controlled by current-related divergences, while biological processes are of secondary importance in the northeastern Equatorial Pacific during the study period in question.

The Distributions of Copepods and Chaetognaths in the Southern Waters of Korea and Their Relationship to the Characteristics of Water Masses (한국 남해의 요각류 및 모악류의 분포와 수괴특성)

  • PARK Joo-Suck;LEE Sam-Seuk;KANG Young-Shil;LEE Byung-Don;Hun Sung-Hoi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.3
    • /
    • pp.245-252
    • /
    • 1990
  • The distributions of copepods and chaetognaths in waters off the southern coast of Korea were investigated to evaluate their reliability as indicator species of different water masses. The samples for this study were collected vertically from about 5m above the bottom at 28 stations along 8 transects in three different months, February, April, and August, 1988. The sampling gear used was 0.45-meter NORPAC plankton net fitted with 0.33mm mesh. Acartia clausi, Centropages abdominalis, and Sagitta crassa were found to be reliable indicator species of neritic cold waters; Pleuromamma gracilis, Undinula darwini, Calocalanus plumulosus, Calanopia elliptica, and Sagitta enflata were of oceanic warm waters; Temora discaudata and Centropages furcatus were of neritic warm waters. According to the cluster analyses of the species found, the distinctive area in February was divisible into two regions or water masses, the coastal and off-shore regions; in April, however, it was divisible into four regions. In August, it was divisible into three areas, further indicating the strength of the Kuroshio tributaries pushing toward the coast.

  • PDF

Feeding Habits of Chub Mackerel (Scomber japonicus) in the South Sea of Korea (남해에 출현하는 고등어 (Scomber japonicus)의 식성)

  • Yoon, Seong-Jong;Kim, Dae-Hyun;Baeck, Gun-Wook;Kim, Jae-Won
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.41 no.1
    • /
    • pp.26-31
    • /
    • 2008
  • The feeding habits of chub mackerel (Scomber japonicus) were studied based on an examination of the stomach contents of 512 specimens collected between November 2005 and October 2006 in the South Sea of Korea. The specimens ranged in fork length (FL) from 23.4-37.5 cm. Chub mackerel is a piscivore and consumes mainly Teleosts such as Engraulis japonicus. Its diet also includes amphipods, crabs, Euphausia, chaetognaths and shrimp. Smaller individuals (<26 cm FL) consume mainly crabs. The proportion of these prey items decreases with increasing fish size, and this decrease paralleles the increased consumption of fish. The prey size increases with S. japonicus size.

Species Composition and Abundance of Zooplankton Community in Spring and Autumn around Dokdo (독도 주변에서 춘계와 추계의 동물플랑크톤 종 조성과 개체수)

  • Kang, Jung-Hoon;Kim, Woong-Seo;Shim, Jae-Hyung
    • Ocean and Polar Research
    • /
    • v.24 no.4
    • /
    • pp.407-417
    • /
    • 2002
  • Species composition and abundance of zooplankton were investigated around Dokdo in the East/Japan Sea in autumn 1999 and spring 2000. Vertical and horizontal hauls of a bongo net ($300{\mu}m$ mesh size, 60cm diameter) were made to collect zooplankton sample. Surface temperature and salinity ranged from $24.2^{\circ}C\;to\;25.1^{\circ}C$, and from 32.9psu to 33.2psu in September 1999, respectively. In May 2000, surface temperatures were $13.9^{\circ}C\;and\;14.2^{\circ}C$ at stations of A1 and A8, and salinity was 34.5psu at both stations. Zooplankton community was dominated by copepods which comprised 61% (September) and 60% (May) of total numerical abundance, respectively. The next dominant groups were appendicularians (11%) and chaetognaths (9%) in September 1999, and other crustaceans (27%) and appendicularians (4%) in May 2000. The 15.7% (September) and 23.2% (May) of copepods were in the juvenile stage of copepodites. The most dominant copepods were Oncaea media (10.4%) and Clausocalanus sp. (8.2%) which preferred warm water in September. In contrast, cold-water copepods such as Pseudocalanus minutus (9.4%) and Metridia pacifica (8.0%) were dominant in May. The results of cluster analysis based on Bray-Curtis index showed that zooplankton community were classified into two groups which represented different water mass. The average abundance of zooplankton in September was 2.1 times higher than that in May, and species number of them in September outnumbered that in May by 29 species. Zooplankton community varied in associated with a characteristic of warm waters which affected marine ecosystem differently in the study area depending on seasons.