• 제목/요약/키워드: Ces$\`{a}$ro mean approximation method

검색결과 2건 처리시간 0.019초

A VISCOSITY APPROXIMATIVE METHOD TO CES$\`{A}$RO MEANS FOR SOLVING A COMMON ELEMENT OF MIXED EQUILIBRIUM, VARIATIONAL INEQUALITIES AND FIXED POINT PROBLEMS

  • Jitpeera, Thanyarat;Katchang, Phayap;Kumam, Poom
    • Journal of applied mathematics & informatics
    • /
    • 제29권1_2호
    • /
    • pp.227-245
    • /
    • 2011
  • In this paper, we introduce a new iterative method for finding a common element of the set of solutions for mixed equilibrium problem, the set of solutions of the variational inequality for a ${\beta}$inverse-strongly monotone mapping and the set of fixed points of a family of finitely nonexpansive mappings in a real Hilbert space by using the viscosity and Ces$\`{a}$ro mean approximation method. We prove that the sequence converges strongly to a common element of the above three sets under some mind conditions. Our results improve and extend the corresponding results of Kumam and Katchang [A viscosity of extragradient approximation method for finding equilibrium problems, variational inequalities and fixed point problems for nonexpansive mapping, Nonlinear Analysis: Hybrid Systems, 3(2009), 475-86], Peng and Yao [Strong convergence theorems of iterative scheme based on the extragradient method for mixed equilibrium problems and fixed point problems, Mathematical and Computer Modelling, 49(2009), 1816-828], Shimizu and Takahashi [Strong convergence to common fixed points of families of nonexpansive mappings, Journal of Mathematical Analysis and Applications, 211(1) (1997), 71-83] and some authors.

On Approximation of Functions Belonging to Lip(α, r) Class and to Weighted W(Lr,ξ(t)) Class by Product Mean

  • Nigam, Hare Krishna;Sharm, Ajay
    • Kyungpook Mathematical Journal
    • /
    • 제50권4호
    • /
    • pp.545-556
    • /
    • 2010
  • A good amount of work has been done on degree of approximation of functions belonging to Lip${\alpha}$, Lip($\xi$(t),r) and W($L_r,\xi(t)$) and classes using Ces$\`{a}$ro, N$\"{o}$rlund and generalised N$\"{o}$rlund single summability methods by a number of researchers ([1], [10], [8], [6], [7], [2], [3], [4], [9]). But till now, nothing seems to have been done so far to obtain the degree of approximation of functions using (N,$p_n$)(C, 1) product summability method. Therefore the purpose of present paper is to establish two quite new theorems on degree of approximation of function $f\;\in\;Lip({\alpha},r)$ class and $f\;\in\;W(L_r,\;\xi(t))$ class by (N, $p_n$)(C, 1) product summability means of its Fourier series.