• 제목/요약/키워드: Cerebral endothelial cell death

검색결과 7건 처리시간 0.02초

Nitric Oxide Prevents the Bovine Cerebral Endothelial Cell Death Induced by Serum-Deprivation

  • Kim, Chul-Hoon;Ahn, Young-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권5호
    • /
    • pp.515-521
    • /
    • 1997
  • Endothelial cells play a central role in the inflammatory processes, and activation of nuclear factor kappa B ($NF-_{\kappa}B$) is a key component in that inflammatory processes. Previously, we reported that tumor necrosis factor alpha($TNF{\alpha}$) had protective effect of cell death induced by serum deprivation and this protection was related to $NF-_{\kappa}B$ activation. Inducible nitric oxide synthase (iNOS) is a member of the molecules which transcription is regulated mainly by $NF-_{\kappa}B$. And the role of nitric oxide (NO) generated by iNOS on cell viability is still controversial. To elucidate the mechanism of $TNF{\alpha}$ and $NF-_{\kappa}B$ activation on cell death protection, we investigate the effect of NO on the cell death induced by serum- deprivation in bovine cerebral endothelial cells in this study. Addition of $TNF{\alpha}$, which are inducer of iNOS, prevented serum-deprivation induced cell death. Increased expression of iNOS was confirmed indirectly by nitrite measurement. When selective iNOS inhibitors were treated, the protective effect of $TNF{\alpha}$ on cell death was partially blocked, suggesting that iNOS expression was involved in controlling cell death. Exogenously added NO substrate (L-arginine) and NO donors (sodium nitroprusside and S-nitroso-N-acetylpenicillamine) also inhibited the cell death induced by serum deprivation. These results suggest that NO has protective effect on bovine cerebral endothelial cell death induced by serum-deprivation and that iNOS is one of the possible target molecules by which $NF-_{\kappa}B$ exerts its cytoprotective effect.

  • PDF

Inhibition of $NF-{\kappa}B$ Activation Increases Oxygen-Glucose Deprivation-Induced Cerebral Endothelial Cell Death

  • Lee, Jin-U;Kim, Chul-Hoon;Shim, Kyu-Dae;Ahn, Young-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권2호
    • /
    • pp.65-71
    • /
    • 2003
  • Increasing evidences suggest that ischemia-induced vascular damage is an integral step in the cascade of the cellular and molecular events initiated by cerebral ischemia. In the present study, employing a mouse brain endothelioma-derived cell line, bEnd.3, and oxygen-glucose deprivation (OGD) as an in vitro stroke model, the role of nuclear factor kappa B (NF-${\kappa}B$) activation during ischemic injury was investigated. OGD was found to activate NF-${\kappa}B$ and to induce bEnd.3 cell death in a time-dependent manner. OGD phosphorylated neither 32 Ser nor 42 Tyr of $I{\kappa}B{\alpha}$. OGD did not change the amount of $I{\kappa}B{\alpha}$. The extents of OGD-induced cell death after 8 h, 10 h, 12 h and 14 h of OGD were 10%, 35%, 60% and 85%, respectively. Reperfusion following OGD did not cause additional cell death, indicating no reperfusion injury after ischemic insult in cerebral endothelial cells. Three known as NF-${\kappa}B$ inhibitors, including pyrrolidine dithiocarbamate (PDTC) plus zinc, aspirin and caffeic acid phenethyl ester (CAPE), inhibited OGD-induced NF-${\kappa}B$ activation and increased OGD-induced bEnd.3 cell death in a dose dependent manner. There were no changes in the protein levels of bcl-2, bax and p53 which are modulated by NF-${\kappa}B$ activity. These results suggest that NF-${\kappa}B$ activation might be a protective mechanism for OGD-induced cell death in bEnd.3.

Role of Protein Kinases on NE-$_{\kappa}B$ Activation and Cell Death in Bovine Cerebral Endothelial Cells

  • Ahn, Young-Soo;Kim, Chul-Hoon;Kim, Joo-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권1호
    • /
    • pp.11-18
    • /
    • 1999
  • Nuclear factor $_{\kappa}B\;(NF-_{\kappa}B)$ activation is modulated by various protein kinases. Activation of $NF-_{\kappa}B$ is known to be important in the regulation of cell viability. The present study investigated the effect of inhibitors of protein tyrosine kinase (PTK), protein kinase C (PKC) and protein kinase A (PKA) on $NF-_{\kappa}B$ activity and the viability of bovine cerebral endothelial cells (BCECs). In serum-deprivation-induced BCEC death, low doses of $TNF{\alpha}$ showed a protective effect. $TNF{\alpha}$ induced $NF-_{\kappa}B$ activation within 4 h in serum-deprivation. PTK inhibitors (herbimycin A and genistein) and PKC inhibitor (calphostin C) prevented $NF-_{\kappa}B$ activation stimulated by $TNF{\alpha}.$ Likewise, these inhibitors prevented the protective effect of $TNF{\alpha}.$ In contrast to $TNF{\alpha}-stimulated\;NF-_{\kappa}B$ activity, basal $NF-_{\kappa}B$ activity of BCECs in media containing serum was suppressed only by calphostin C, but not by herbimycin A. As well BCEC death was also induced only by calphostin C in serum-condition. H 89, a PKA inhibitor, did not affect the basal and $TNF{\alpha}-stimulated\;NF-_{\kappa}B$ activities and the protective effect of $TNF{\alpha}$ on cell death. These data suggest that modulation of $NF-_{\kappa}B$ activation could be a possible mechanism for regulating cell viability by protein kinases in BCECs.

  • PDF

Proteomic Analysis of a Rat Cerebral Ischemic Injury Model after Human Cerebral Endothelial Cell Transplantation

  • Choi, Tae-Min;Yun, Misun;Lee, Jung-Kil;Park, Jong-Tae;Park, Man-Seok;Kim, Hyung-Seok
    • Journal of Korean Neurosurgical Society
    • /
    • 제59권6호
    • /
    • pp.544-550
    • /
    • 2016
  • Objective : Cerebral endothelial cells have unique biological features and are fascinating candidate cells for stroke therapy. Methods : In order to understand the molecular mechanisms of human cerebral endothelial cell (hCMEC/D3) transplantation in a rat stroke model, we performed proteomic analysis using 2-dimensional electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Protein expression was confirmed by quantitative real-time PCR and Western blot. Results : Several protein spots were identified by gel electrophoresis in the sham, cerebral ischemia (CI), and CI with hCMEC/D3 treatment cerebral ischemia with cell transplantation (CT) groups, and we identified 14 differentially expressed proteins in the CT group. Proteins involved in mitochondrial dysfunction (paraplegin matrix AAA peptidase subunit, SPG7), neuroinflammation (peroxiredoxin 6, PRDX6), and neuronal death (zinc finger protein 90, ZFP90) were markedly reduced in the CT group compared with the CI group. The expression of chloride intracellular channel 4 proteins involved in post-ischemic vasculogenesis was significantly decreased in the CI group but comparable to sham in the CT group. Conclusion : These results contribute to our understanding of the early phase processes that follow cerebral endothelial cell treatment in CI. Moreover, some of the identified proteins may present promising new targets for stroke therapy.

A Conclusive Review on Amyloid Beta Peptide Induced Cerebrovascular Degeneration and the Mechanism in Mitochondria

  • Merlin, Jayalal L.P.
    • 통합자연과학논문집
    • /
    • 제6권3호
    • /
    • pp.125-137
    • /
    • 2013
  • Promising evidence suggests that amyloid beta peptide ($A{\beta}$), a key mediator in age-dependent neuronal and cerebrovascular degeneration, activates death signalling processes leading to neuronal as well as non-neuronal cell death in the central nervous system. A major cellular event in $A{\beta}$-induced apoptosis of non-neuronal cells, including cerebral endothelial cells, astrocytes and oligodendrocytes, is mitochondrial dysfunction. The apoptosis signalling cascade upstream of mitochondria entails $A{\beta}$ activation of neutral sphingomyelinase, resulting in the release of ceramide from membrane sphingomyelin. Ceramide then activates protein phosphatase 2A (PP2A), a member in the ceramide-activated protein phosphatase (CAPP) family. PP2A dephosphorylation of Akt and FKHRL1 plays a pivotal role in $A{\beta}$-induced Bad translocation to mitochondria and transactivation of Bim. Bad and Bim are pro-apoptotic proteins that cause mitochondrial dysfunction characterized by excessive ROS formation, mitochondrial DNA (mtDNA) damage, and release of mitochondrial apoptotic proteins including cytochrome c, apoptosis inducing factor (AIF), endonuclease G and Smac. The cellular events activated by $A{\beta}$ to induce death of non-neuronal cells are complex. Understanding these apoptosis signalling processes will aid in the development of more effective strategies to slow down age-dependent cerebrovascular degeneration caused by progressive cerebrovascular $A{\beta}$ deposition.

배양(培養)된 혈관(血管) 내피세포(內皮細胞)에서 산화성(酸化性) 세포(細胞) 손상(損傷)에 미치는 성향정기산(星香正氣散)의 보호(保護) 효과(效果) (Protection by Sunghyangchungisan against Oxidative Endothelial Cell Injury)

  • 이동언;김영균
    • 대한한의학방제학회지
    • /
    • 제8권1호
    • /
    • pp.147-167
    • /
    • 2000
  • Reactive oxygen species (ROS) play an important role in the pathogenesis of a variety of life threatening conditions such as atherosclerosis, myocardial infarction and cerebral stroke. In this study, the effect of Sunghyangchungisan (SHCS) as a cytoproctant against ROS-induced cell injury was studied by investigating its effect on $H_{2}O_2-induced$ cell injury in cultured endothelial cells derived from the human umbilical vein. SHCS effectively proteced the cells against $H_{2}O_2-induced$ injury determined by trypan blue exclusion ability and lactate dehydrogenase (LDH) release. The effect of SHCS was concentration-dependent and the concentrations to inhibit by 50% the cell death and LDH release were $0.9{\pm}0.1$ and $1.2{\pm}0.1\;mg/ml$, respectively. In addition, SHCS effectively protected the cells against t-butylhydroperoside- and menadione-Induced injury as well. SHCS inhibited lipid peroxidation determined by malondialdehyde production. SHCS exerted as an effective scavenger of ROS produced by exposing the cells to $H_{2}O_2$ The activities of the intracellular ROS scavenging enzymes such as superoxide dismutase, catalase and glutathione peroxidase were not Influenced by SHCS.These results indicate that SHCS might exert as an effective cytoprotectant against ROS-induced cell injury. Further intensive studies would provide us insights into mechanisms of the pharmacological actions of SHCS.

  • PDF

치밀이음부 구조단백질인 Occludin에 대한 활성산소종의 영향 (The Changes of Occludin in Tight Junction of Blood-Brain Barrier by ROS)

  • 이희상;김대진;손동섭;정봉수;최형택;심규민;이금정;조혜진;김석중;이종찬;정윤희;김성수;이원복
    • Applied Microscopy
    • /
    • 제34권4호
    • /
    • pp.231-239
    • /
    • 2004
  • 뇌에서 혈액뇌장벽을 형성하는 내피세포는 치밀이음부를 통해 뇌의 항상성을 유지하고 있다. 치밀이음부의 단백질 중의 하나인 occludin은 뇌혈관장벽(BBB)의 기능을 유지하는 중요한 단백질로 인식되고 있다. 본 실험에서는 소의 뇌에서 배양된 BBB 내피세포에서 활성산소종의 하나인 $H_2O_2$에 의해 일어나는 occludin 단백질의 변화를 관찰하였다. $H_2O_2$에 의해 TEER가 감소하는 것은 occludin의 재분포에 의한 것이었다. 세포독성은 4시간내에서는 1mM $H_2O_2$ 이하에서는 나타나지 않았다. Confocal laser microscope으로 관찰한 결과, $H_2O_2$에 의해 occludin은 치밀이음부에서 중간중간이 사라져 감소해 있었고, 이러한 양상은 $H_2O_2$의 용량과 노출시간에 비례하였다. 그러나 Western blot 결과, occludin의 총량은 증가하였다. 투과전자현미경 관찰을 통해 $H_2O_2$가 세포사이의 결합의 구조에 뚜렷한 변화를 미치지 않는 것을 알 수 있었다. 이를 통해 $H_2O_2$에 의한 BBB 기능소실은 occludin이 치밀이음부에서 부분적으로 사라지는 것에 의하지만, 세포는 기능손상을 복구하기위한 방편으로 이 단백질의 생산을 더욱 증가시키는 것으로 생각된다.