• Title/Summary/Keyword: Ceramic powder

Search Result 1,857, Processing Time 0.027 seconds

Freshness Preserving of Table Grape using Corrugated Paperboard Box Laminated with Functional MA Film (기능성 골판지 상자로 포장한 포도의 신선도 유지효과)

  • 박형우;박종대;김태규;김기정
    • Food Science and Preservation
    • /
    • v.5 no.4
    • /
    • pp.331-334
    • /
    • 1998
  • Weight loss of table Grape packed with control(Corrugated paperboard box), LDPE, CE(MA film masterbatched by ceramic powder treated cemical reagent) and FC box(laminated by CE film pouch) at 25 C after 10 days were 5.6%, 0.4%, 0.6%, and 0.7%, respectively. Weight loss of control was 7.29times higher than that of FC box. Total ascorbic acid content(TAA) of table grape after 10 days was 3.42 mg% for control, was 5.33 for LDPE and 5.14mg% for CE, 4.98mg% for FC. TAA of LDPE and CE showed to higher than that of control, especially TAA of FC was 33% higher than that of control. Titratable acid of LDPE and CE was high compare to control, and acidity of FC was 6% higher than that of control. References in overall appearance of LDPE, CE and FC were better than that of control. Corrugated paperboard box(FC) laminated with functional MA film showed to be able to used as packaging box of table grape.

  • PDF

Oxygen Permeation and Hydrogen Production of BaCo1-x-yFexZryO3-δ by a Modified Glycine-nitrate Process (MGNP) (Modified glycine-nitrate process(MGNP)로 합성한 BaCo1-x-yFexZryO3-δ 산소투과도 및 수소생산성)

  • Yi, Eunjeong;Hwang, Haejin
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.1
    • /
    • pp.29-35
    • /
    • 2013
  • A dense mixed ionic and electronic conducting ceramic membrane is one of the most promising materials because it can be used for separation of oxygen from the mixture gas. The $ABO_3$ perovskite structure shows high chemical stability at high temperatures under reduction and oxidation atmospheres. $BaCo_{1-x-y}Fe_xZr_yO_{3-{\delta}}$ (BCFZ) was well-known material as high mechanical strength, low thermal conductivity and stability in the high valence state. Glycine Nitrate Process (GNP) is rapid and effective method for powder synthesis using glycine as a fuel and show higher product crystallinity compared to solid state reaction and citrate-EDTA method. BCFZ was fabricated by modified glycine nitrate process. In order to control the burn-up reaction, $NH_4NO_3$ was used as extra nitrate. According to X-Ray Diffraction (XRD) results, BCFZ was single phase regardless of Zr dopants from y=0.1 to 0.3 on B sites. The green compacts were sintered at $1200^{\circ}C$ for 2 hours. Oxygen permeability, methane partial oxidation rate and hydrogen production ability of the membranes were characterized by using Micro Gas Chromatography (Micro GC) under various condition. The high oxygen permeation flux of BCFZ 1-451 was about $1ml{\cdot}cm^{-2}s^{-1}$. Using the humidified Argon gas, BCFZ 1-433 produced hydrogen about $1ml{\cdot}cm^{-2}s^{-1}$.

Fabrication and Characterization of piezoelectric thick films prepared by Screen Printing Method (Screen Printing법을 이용한 압전 후막의 제조 및 특성연구)

  • 김상종;최형욱;백동수;최지원;윤석진;김현재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.873-876
    • /
    • 2000
  • Characteristics of piezoelectric thick films prepared by screen printing method were investigated. The piezoelectric thick films were printed using Pb(Mg,Nb)O$_3$-Pb(Zr,Ti)O$_3$system. The lower electrodes were coated with various thickness of Ag-Pd by screen printing to investigate the effect as a diffusion barrier and deposited with Pt by sputtering on Ag-Pd. The ceramic paste was prepared by mixing powder and binder with various ratios using three roll miller. The fabricated thick films were burned out at 650$^{\circ}C$ and sintered at 950$^{\circ}C$ in the O$_2$condition for each 20, 60min after printing with 350mesh screen. The thickness of piezoelectric thick film was 15∼20 $\mu\textrm{m}$ and the Ag-Pd electrode acted as a diffusion barrier above 3 $\mu\textrm{m}$ thickness. When the lower electrode Ag-Pd was 6 $\mu\textrm{m}$ and the piezoelectric thick films were sintered by 2nd step (650$^{\circ}C$/20min and 950$^{\circ}C$/1h) using paste mixed Pb(Mg,Nb)O$_3$-Pb(Zr,Ti)O$_3$$.$ MnO$_2$+ Bi$_2$O$_3$. V$_2$O$\_$5/ and binder in the ratio of 70:30, the remnant polarization of thick film was 9.1 ${\mu}$C /cm$^2$.

  • PDF

Preparation of ZrB2 by Self-propagating Synthesis and Its Characteristics (자전연소합성법에 의한 ZrB2 세라믹분말합성 및 NaCl의 영향)

  • Kim, Jinsung;Nersisyan, Hayk;Won, Changwhan
    • Korean Journal of Materials Research
    • /
    • v.24 no.5
    • /
    • pp.255-258
    • /
    • 2014
  • Zirconium boride is an artificial or which is rarely found in the nature. $ZrB_2$ is popular in the hard material industry because it has a high melting point, excellent mechanical properties and chemical stability. There are two known methods to synthesize $ZrB_2$. The first involves direct reaction between Zr and B, and the second is by reduction of the metal halogen. However, these two methods are known to be unsuitable for mass production. SHS(Self-propagating High-temperature Synthesis) is an efficient and economic method for synthesizing hard materials because it uses exothermic reactions. In this study, $ZrB_2$ was successfully synthesized by subjecting $ZrO_2$, Mg and $B_2O_3$ to SHS. Because of the high combustion temperature and rapid combustion, in conjunction with the stoichiometric ratio of $ZrO_2$, Mg and $B_2O_3$; single phase $ZrB_2$ was not synthesized. In order to solve the temperature problem, Mg and NaCl additives were investigated as diluents. From the experiments it was found that both diluents effectively stabilized the reaction and combustion regime. The final product, made under optimum conditions, was single-phase $ZrB_2$ of $0.1-0.9{\mu}m$ particle size.

Effects of Manganese Precursors on MnOx/TiO2 for Low-Temperature SCR of NOx (NOx제거용 MnOx-TiO2 계 저온형SCR 촉매의 Mn전구체에 따른 영향)

  • Kim, Janghoon;Shin, Byeong kil;Yoon, Sang hyeon;Lee, Hee soo;Lim, Hyung mi;Jeong, Yongkeun
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.3
    • /
    • pp.201-205
    • /
    • 2012
  • The effects of various manganese precursors for the low-temperature selective catalytic reduction (SCR) of $NO_x$ were investigated in terms of structural, morphological, and physico-chemical analyses. $MnO_x/TiO_2$ catalysts were prepared from three different precursors, manganese nitrate, manganese acetate(II), and manganese acetate(III), by the sol-gel method. The manganese acetate(III)-$MnO_x/TiO_2$ catalyst tended to suppress the phase transition from the anatase structure to the rutile or the brookite after calcination at $500^{\circ}C$ for 2 h. It also had a high specific surface area, which was caused by a smaller particle size and more uniform distribution than the others. The change of catalytic acid sites was confirmed by Raman and FT-IR spectroscopy and the manganese acetate(III)-$MnO_x/TiO_2$ had the strongest Lewis acid sites among them. The highest de-NOx efficiency and structural stability were achieved by using the manganese cetate(III) as a precursor, because of its high specific surface area, a large amount of anatase $TiO_2$, and the strong catalytic acidity.

Comparative Study on the Characteristics of Heat Dissipation using Silicon Carbide (SiC) Powder Semiconductor Module (탄화규소(SiC) 반도체를 사용한 모듈에서의 방열 거동 해석 연구)

  • Jung, Cheong-Ha;Seo, Won;Kim, Gu-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.89-93
    • /
    • 2018
  • Ceramic substrates applied to power modules of electric vehicles are required to have properties of high thermal conductivity, high electrical insulation, low thermal expansion coefficient and resistance to abrupt temperature change due to high power applied by driving power. Aluminum nitride and silicon nitride, which are applied to heat dissipation, are considered as materials meeting their needs. Therefore, in this paper, the properties of aluminum nitride and silicon nitride as radiator plate materials were compared through a commercial analysis program. As a result, when the process of applying heat of the same condition to aluminum nitride was implemented by simulation, the silicon nitride exhibited superior impact resistance and stress resistance due to less stress and warping. In terms of thermal conductivity, aluminum nitride has superior properties as a heat dissipation material, but silicon nitride is more dominant in terms of reliability.

Surface Modification and Bioactivity Improvement of 3Y-TZP Substrate by Spray Coating of Hydroxyapatite/Fosterite Composite Powder (하이드록시아파타이트/포스터라이트 복합분말의 분사코팅에 의한 3Y-TZP 기판의 표면개질과 생체활성 증진)

  • Yu Hyeon Yun;Jong Kook Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.8
    • /
    • pp.337-343
    • /
    • 2023
  • 3Y-TZP (3 mol% yttria-stabilized tetragonal zirconia polycrystals) ceramics have excellent mechanical properties including high fracture toughness, good abrasion resistance as well as chemical and biological stability. As a result, they are widely used in mechanical and medical components such as bearings, grinding balls, and hip implants. In addition, they provide excellent light transmittance, biocompatibility, and can match tooth color when used as a dental implant. Recently, given the materials' resemblance to human teeth, these ceramics have emerged as an alternative to titanium implants. Since the introduction of CAD/CAM in the manufacture of ceramic implants, they've been increasingly used for prosthetic restoration where aesthetics and strength are required. In this study, to improve the surface roughness of zirconia implants, we modified the 3Y-TZP surface with a biocomposite of hydroxyapatite and forsterite using room temperature spray coating methods, and investigated the mixed effect of the two powders on the evolution of surface microstructure, i.e., coating thickness and roughness, and biological interaction during the in vitro test in SBF solution. We compared improvement in bioactivity by observing dissolution and re-precipitation on the specimen surface. From the results of in vitro testing in SBF solution, we confirmed improvement in the bioactivity of the 3Y-TZP substrate after surface modification with a biocomposite of hydroxyapatite and forsterite. Surface dissolution of the coating layer and the precipitation of new hydroxyapatite particles was observed on the modified surface, indicating the improvement in bioactivity of the zirconia substrate.

A Study on the single crystal growth of the optic-grade $LiTaO_3$ as a electro-optic materials

  • Kim, B.k.;J.K. Yoon
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.526-526
    • /
    • 1996
  • The single crystal of LiTaO3 is well known eletro-optic material as well as the piezoelectric one applied to SAW filter. LiTaO3 has large electro-optic effects, so applied to optical switch, acosto-optic deflector, and optical memory device using photorefractive effects. The crystal growth of SAW-grade LiTaO3 has been studied many aspects, but there is no detail research about optic-grade crystal growth. The conditions of optic-grade LiTaO3 single crystal are as below. The optical transmittance must be over 75%, and axial and radial concentratiom uniformity below 1%. The variation of Curie temperature depending on Li/Ta ratio must be also below 2$^{\circ}C$ and no internal no internal cracks and defects. Because of the limitation of crystal quality, the growing of optic-grade LiTaO3 single crystal is very difficult compared with the growing of SAW-grade. In this research, upper conditions of optic-grade single crystal was investigated after growing of 1 inch diameter and 1.5 inch length LiTaO3 single crystal having no internal cracks and defects using Czochralski method. Curie temperature was determined with DSC and measuring capacitance and lattice parameter was calculated about the grown crystal and ceramic powder samples of various Li/Ta ratio. The result of Tc variation was below 1.2$^{\circ}C$ all over the grown crystal, so it is confirmed that LiTaO3 was grown under congruent melting composition having optical homogeniety. Also, the optical transmittance was about 78%, which was sufficient for optical device.

  • PDF

Directional solidification by the skull melting in the $YO_{1.5}-BaO-CuO$ system (Skull melting 방법에 의한 $YO_{1.5}-BaO-CuO$계의 방향적 결정성장)

  • Chung, Yong S.;Hill, D. Norman
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.2
    • /
    • pp.148-156
    • /
    • 1994
  • Three composition in the system of $YO_{1.5}-BaO-CuO$ were grown using a cold crucible (skull) melting technique with a 50 kW R.F. induction generator operating at 4 MHz as the power source. The starting materials were prepared by conventional ceramic powder processing methods, loaded into the skull, and melted at about $1200^{\circ}C$. For this study, compositions near the $YBa_2Cu_3O_X$ region were selected. The growth rates used ranged from 4 cm/hr to 0.25 cm/hr. The relation between the microstructures and the starting composition of each ingot was determined using metallograph, X-ray diffraction, and energy dispersive X-ray analysis. Both $YBa_2Cu_3O_X$ and $Y_2BaCuO_5$ needle-shaped crystals, aligned with the growth direction, were formed in the $CuO-BaCuO_2$ eutectic matrix of the $YBa_2Cu_7O_x and YBa_5Cu_{11}O_x$ ingot.

  • PDF

Characteristics of Sn-doped β-Ga2O3 single crystals grown by EFG method (EFG 법으로 성장한 β-Ga2O3 단결정의 Sn 도핑 특성 연구)

  • Tae-Wan Je;Su-Bin Park;Hui-Yeon Jang;Su-Min Choi;Mi-Seon Park;Yeon-Suk Jang;Won-Jae Lee;Yun-Gon Moon;Jin-Ki Kang;Yun-Ji Shin;Si-Yong Bae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.2
    • /
    • pp.83-90
    • /
    • 2023
  • The β-Ga2O3 has the most thermodynamically stable phase, a wide band gap of 4.8~4.9 eV and a high dielectric breakdown voltage of 8MV/cm. Due to such excellent electrical characteristics, this material as a power device material has been attracted much attention. Furthermore, the β-Ga2O3 has easy liquid phase growth method unlike materials such as SiC and GaN. However, since the grown pure β-Ga2O3 single crystal requires the intentionally controlled doping due to a low conductivity to be applied to a power device, the research on doping in β-Ga2O3 single crystal is definitely important. In this study, various source powders of un-doped, Sn 0.05 mol%, Sn 0.1 mol%, Sn 1.5 mol%, Sn 2 mol%, Sn 3 mol%-doped Ga2O3 were prepared by adding different mole ratios of SnO2 powder to Ga2O3 powder, and β-Ga2O3 single crystals were grown by using an edge-defined Film-fed Growth (EFG) method. The crystal direction, crystal quality, optical, and electrical properties of the grown β-Ga2O3 single crystal were analyzed according to the Sn dopant content, and the property variation of β-Ga2O3 single crystal according to the Sn doping were extensively investigated.