DOI QR코드

DOI QR Code

Effects of Manganese Precursors on MnOx/TiO2 for Low-Temperature SCR of NOx

NOx제거용 MnOx-TiO2 계 저온형SCR 촉매의 Mn전구체에 따른 영향

  • Kim, Janghoon (National Core Research Center for hybrid materials solution, Pusan National University) ;
  • Shin, Byeong kil (School of Materials Science & Engineering, Pusan National University) ;
  • Yoon, Sang hyeon (School of Materials Science & Engineering, Pusan National University) ;
  • Lee, Hee soo (School of Materials Science & Engineering, Pusan National University) ;
  • Lim, Hyung mi (Eco-Composite Materials Center Korea Institute of Ceramic Engineering and Technology) ;
  • Jeong, Yongkeun (National Core Research Center for hybrid materials solution, Pusan National University)
  • 김장훈 (부산대학교 하이브리드 소재 솔루션 국가핵심연구센터) ;
  • 신병길 (부산대학교 재료공학부) ;
  • 윤상현 (부산대학교 재료공학부) ;
  • 이희수 (부산대학교 재료공학부) ;
  • 임형미 (한국세라믹기술원 에코복합소재센터) ;
  • 정영근 (부산대학교 하이브리드 소재 솔루션 국가핵심연구센터)
  • Received : 2011.12.01
  • Published : 2012.03.25

Abstract

The effects of various manganese precursors for the low-temperature selective catalytic reduction (SCR) of $NO_x$ were investigated in terms of structural, morphological, and physico-chemical analyses. $MnO_x/TiO_2$ catalysts were prepared from three different precursors, manganese nitrate, manganese acetate(II), and manganese acetate(III), by the sol-gel method. The manganese acetate(III)-$MnO_x/TiO_2$ catalyst tended to suppress the phase transition from the anatase structure to the rutile or the brookite after calcination at $500^{\circ}C$ for 2 h. It also had a high specific surface area, which was caused by a smaller particle size and more uniform distribution than the others. The change of catalytic acid sites was confirmed by Raman and FT-IR spectroscopy and the manganese acetate(III)-$MnO_x/TiO_2$ had the strongest Lewis acid sites among them. The highest de-NOx efficiency and structural stability were achieved by using the manganese cetate(III) as a precursor, because of its high specific surface area, a large amount of anatase $TiO_2$, and the strong catalytic acidity.

Keywords

Acknowledgement

Supported by : 지식경제부, 한국연구재단

References

  1. H. Bosch and F. Janssen, Catal. Today 2, 369 (1988). https://doi.org/10.1016/0920-5861(88)80002-6
  2. I. Mochida, M. Ogaki, H. Fujitsu, Y. Komatsubara, and S. Ida, Fuel 62, 867 (1983). https://doi.org/10.1016/0016-2361(83)90044-3
  3. Y. Traa, B. Burger, and J. Weitkamp, Microporous and Mesoporous Materials 30, 3-41 (1999). https://doi.org/10.1016/S1387-1811(99)00030-X
  4. S. Djerad, M. Crocoll, S. Kureti, L. Tifouti, and W. Weisweiler, Catal. Today 113, 208 (2006). https://doi.org/10.1016/j.cattod.2005.11.067
  5. Y. Komatsubara, S. Ida, H. Fujitsu, and I. Mochida, Fuel 63, 1738 (1984). https://doi.org/10.1016/0016-2361(84)90110-8
  6. K. Kusakabe, M. Kashima, S. Morooka, and Y. Kato, Fuel 67, 714 (1988). https://doi.org/10.1016/0016-2361(88)90304-3
  7. E. Richter, H. J. Schmidt, and H. G. Schecker, Chem. Eng. Technol. 13, 332 (1990). https://doi.org/10.1002/ceat.270130146
  8. P. G. Smirniotis, D. A. Pen a, and S. Balu, Uphade, Angew. Chem. Int. Ed. 13, 40 (2001).
  9. J. Li, J. Chen, R. Ke, C. Luo, and J. Hao, Catal Comm, 8, 1896 (2007). https://doi.org/10.1016/j.catcom.2007.03.007
  10. Z. Wu, B. Jiang, Y. Liu, W. Zhao, and B. Guan, J. Hazard Mater. 145, 488 (2007) https://doi.org/10.1016/j.jhazmat.2006.11.045
  11. B. Jiang, Y. Liu, and Z. Wu, J. Hazard Mater. 162, 1249 (2009). https://doi.org/10.1016/j.jhazmat.2008.06.013
  12. D. A. Pena, B. S. Uphade, E. P. Reddy, and P. G. Smirniotis, J. Phys. Chem. B 108, 9927 (2004). https://doi.org/10.1021/jp0313122
  13. G. L. Bauerle, S. C. Wu, and K. Nobe, Ind. Eng. Chem. Prod. Res. Dev. 17, 123 (1978). https://doi.org/10.1021/i360066a007
  14. R. Jin, Y. Liu, Z. Wu, H. Wang, and T. Gu, Chemosphere. 78, 1160 (2010). https://doi.org/10.1016/j.chemosphere.2009.11.049
  15. F. Kapteijn, L. Singoredjo, M. Vandriel, A. Andreini, J. A. Moulijn, G. Ramis, and G. Busc, J.Catal. 150, 105 (1994). https://doi.org/10.1006/jcat.1994.1326