• Title/Summary/Keyword: Ceramic particle

검색결과 991건 처리시간 0.031초

Characterization of Lightweight Earthenware Tiles using Foaming Agents

  • Lee, Won-Jun;Cho, Woo-Suk;Hwang, Kwang-Taek;Kim, Jin-Ho;Hwang, Hae-Jin;Lee, Yong-Ouk
    • 한국세라믹학회지
    • /
    • 제52권6호
    • /
    • pp.473-478
    • /
    • 2015
  • Green bodies of earthenware tile were prepared from a mixture of earthenware tile powder and SiC as forming agents by applying a conventional process. Granule powder for tile samples was prepared using the spray drying method with commercial earthenware raw material with a quantity of SiC of 0.3 wt%. The applied pressure was $250kg{\cdot}f/m^2$ and the firing temperature was $1050-1200^{\circ}C$. The effects of the SiC particle size and sintering temperature on the open porosity and total porosity were investigated and the correlative mechanism was also discussed. While total porosity was not significantly changed by decreasing the SiC particle size, the open porosity showed a gradual decrease, which represents an increase of the closed porosity. As the sintering temperature increased, coarsening was made among the pores due to excessive oxidation. The volume shrinkage and bending strength were demonstrated for the sintered tile samples. The sintered bulk density was also measured to determine the weight reduction value.

광산란법에서 실리카 졸의 농도 및 표면특성이 입자 크기 및 전기영동 이동도 측정결과에 미치는 영향 (Effect of Concentration and Surface Property of Silica Sol on the Determination of Particle Size and Electrophoretic Mobility by Light Scattering Method)

  • 조경숙;이동현;김대성;임형미;김종엽;이승호
    • Korean Chemical Engineering Research
    • /
    • 제51권5호
    • /
    • pp.622-627
    • /
    • 2013
  • 콜로이달 실리카는 실리콘과 사파이어 웨이퍼의 정밀연마슬러리, 유-무기 하이브리드 코팅제, 정밀주조의 바인더 등 다양한 제품으로 사용되는 물질이다. 이러한 실리카 졸의 입자크기 및 분산 안정성은 웨이퍼의 표면, 코팅 막 혹은 벌크의 기계적, 화학적, 광학적 특성에 영향을 주기 때문에 정확한 측정값이 요구된다. 본 연구에서는 제조사에서 제시한 입자 크기 및 표면 특성이 다른 8종류 실리카 졸의 부피 분율에 따라 입자 크기, 졸 점도 및 입자 전기영동이동도의 측정결과에 미치는 영향을 논의하였다. 높은 표면활성을 지닌 실리카 입자의 특성 및 실리카 졸의 희석에 의한 안정화 이온 농도의 변화로 인해 실리카의 측정 입자 크기와 이동도는 졸의 부피 분율 혹은 입자 크기에 따라 변한다. 60 nm 보다 작은 입자는 부피 분율이 증가함에 따라 측정된 입자 크기가 증가한 반면에, 그 보다 큰 입자에서는 측정된 입자 크기가 감소하였다. 12 nm와 같이 작은 입자는 부피 분율이 증가함에 따라 점도가 상승하면서 측정 입자의 이동도가 감소한 반면에 100 nm의 큰 입자는 0.048의 낮은 부피 분율까지 이동도가 증가하다가 그보다 높은 부피 분율부터 감소하였다.

사염화티타늄의 기상가수분해반응에 의한 $TiO_2$ 미분의 제조 및 입자특성 (Preparation and Characterization of Fine $TiO_2$ Powders by Vapor-Phase Hydrolysis of TiCl4)

  • 염선민;김광호;신동원;박찬경
    • 한국세라믹학회지
    • /
    • 제29권7호
    • /
    • pp.525-532
    • /
    • 1992
  • TiO2 fine powder was synthesized in the gas phase by chemical vapor deposition using hydrolysis of TiCl4. Content of rutile phase in the powder was investigated. Powder characteristics such as size, crystallinity and morphology were also studied by means of TEM, SEM and XRD. Rutile phase in TiO2 powder started to be formed from 100$0^{\circ}C$ and the content increased with the reaction temperature and TiCl4 concentration. As the temperature increased from 80$0^{\circ}C$ to 140$0^{\circ}C$, the primary particle size increased while secondary particle size decreased. Spherical secondary particle with fine primary crystals agglomerated was produced at low temperature of 80$0^{\circ}C$ whereas the grown primary particle being final particle size was produced at higher temperature of 140$0^{\circ}C$. Other effects of TiCl4 and H2O partial pressures on particle size were also reported in this study.

  • PDF

저온 소성용 유리-알루미나 복합체에서 유리 입자크기에 따른 소결거동 (Effects of Glass Particle Size on Sintering Behaviors of the Glass-Alumina Composites for Low Firing Temperature)

  • 박덕훈;김봉철;김정주;박이순
    • 한국세라믹학회지
    • /
    • 제37권6호
    • /
    • pp.545-551
    • /
    • 2000
  • Sintering behaviors of the glass-alumina composites for low firing temperature were investigated as a function of the particle size of glass frit. The system of glass frit was Pb-B-Si-Al-O. The median particle sizes of the glass frits were 2.72$\mu\textrm{m}$, 2.67$\mu\textrm{m}$ and 1.33$\mu\textrm{m}$, which were prepared with changing ball-milling times as 24 h, 48 h and 96 h. The glass-alumina composites showed maximum density at certain temperature, and further heating led to dedensification behaviors, so called over-firing. The sintering temperature, which showed maximum density, raised from 425$^{\circ}C$ to 475$^{\circ}C$ with increase of particle size of glass frit from 1.33$\mu\textrm{m}$ to 2.72$\mu\textrm{m}$. Especially, the over firing behaviors, which were occurred at high sintering temperatures, were greatly increased with decrease of particle size of glass frit.

  • PDF

전사법으로 제조한 SOFC용 YSZ 전해질 전사지의 치밀화 및 전기화학적 특성 (Densification and Electrochemical Properties of YSZ Electrolyte Decalcomania Paper for SOFCs by Decalcomania)

  • 조해란;최병현;안용태;백성현;노광철;박선민
    • 대한금속재료학회지
    • /
    • 제50권9호
    • /
    • pp.685-690
    • /
    • 2012
  • Decalcomania is a new method for SOFCs (solid oxide fuel cells) unit cell fabrication. A tight and dense $5{\mu}m$ Yttria-stabilized zirconia (8YSZ) electrolyte layer on anode substrate was fabricated by the decalcomania method. After 8YSZ as the electrolyte starting material was calcined at $1200^{\circ}C$, the particle size was controlled by the attrition mill. The median particle size (D50) of each 8YSZ was $39.6{\mu}m$, $9.30{\mu}m$, $6.35{\mu}m$, and $3.16{\mu}m$, respectively. The anode substrate was coated with decalcomania papers which were made by using 8YSZ with different median particle sizes. In order to investigate the effect of median particle sizes and sintering conditions on the electrolyte density, each sample was sintered for 2, 5 and 10 h, respectively. 8YSZ with a median particle size of $3.16{\mu}m$ which was sintered at $1400^{\circ}C$ for 10 had the highest density. With this 8YSZ, a SOFCs unit cell was manufactured with a $5{\mu}m$ layer by the decalcomania method. Then the unit cell was run at $800^{\circ}C$. The Open Circuit Voltage (OCV) and Maximum power density (MPD) was 1.12 V and $650mW/cm^2$, respectively.

The Fluidity of Cement Pastes with Fly Ashes Containing a Lot of Unburned Carbon

  • Lee, Seung-Heun;Kawakami, Akira;Sakai, Etsuo;Daimon, Masaki
    • 한국세라믹학회지
    • /
    • 제40권3호
    • /
    • pp.219-224
    • /
    • 2003
  • Fly ashes containing 6.1~16.5 wt% of unburned carbon were treated thermally at 500$^{\circ}C$ for 3 h and thus, the content of unburned carbon was decreased below 2.1 wt%, the range of particle size distribution became narrower and the mean particle size became smaller. Besides, the properties of particles in fly ashes were improved, particularly the particle shape became close to a spherical type. The fluidity of cement pastes containing fly ashes treated previously at 500$^{\circ}C$ for 3 h was increased much than that of cement pastes containing original fly ashes. When the added amount of superplasticizer was over the saturation amount, there was no correlation between the amount of unburned carbon in fly ashes and the apparent viscosity of cement pastes actually. On the contrary, when the added amount of superplasticizer was below the saturation amount, there was a correlation.

초임계 유체를 이용한 초미립 TiO$_2$ 제조 (Fabrication of Ultra-Fine TiO$_2$ Powders Using Supercritical Fluid)

  • 송정환;임대영
    • 한국세라믹학회지
    • /
    • 제35권10호
    • /
    • pp.1049-1054
    • /
    • 1998
  • In order to fabricate ideal powders new processing is necessary in which the solute atoms in solution ra-pidly move to mix each other to the degree of molecular level the viscosity of solution should be low not to effect the moving of solute atoms and the powders could be directly obtained as crystalline. Supercritical fluid is defined as condensed gas sated up to its critical pressure and temperature. In this paper su-percritical fluid methods were studied as a new ceramic processing of powder preparation. The crystalline powders of TiO2 which are useful for electronic ceramic materials were fabricated by hydrolysis of titanium (IV) ethoxide using ethanol as a supercritical fluid at the condition of 270$\pm$3$^{\circ}C$, 7.3 MPa for 2hr. The cry stalline anatase powders could be directly obtained and its primary particle size was 20 min.

  • PDF

기체분리용 세라믹 복합분리막의 개발: II. 극미세 입자 $TiO_2$ 졸의 제조 및 코팅 특성 (Development of Ceramic Composite Membranes for Gas Separation: II. Preparation and Coating Characteristics of Nanoparticulate $TiO_2$ Sols)

  • 현상훈;박준수;최세영
    • 한국세라믹학회지
    • /
    • 제29권9호
    • /
    • pp.739-749
    • /
    • 1992
  • The sols prepared by dialyzing solutions, in which the hydrolyzed precipitates of TEOT or directly Ti(OC3H7)4 were resolved, were the nanoparticulate sol with the average particle size less than 7 nm and the anatase crystal phase. In the pH range of 1.5 to 2.9, the particle size of the nanoparticulate TiO2 sols (0.09 mol/ι) increased gradually upto 15 nm~26nm with the increase of pH in the initial aging state but the sols were transparent all the time, and stable without growin any more after 30 days. When the slipcasted porous alumina tubes were coated by the sol-gel dipping method, the minimum particle size and the aging time for forming the coated gel layer at the given pH were optimized. For obtaining the very thin crack-free and reproducible membrane coating, the use of a nanoparticulate TiO2 sol (0.09 mol/ι) aged for about 30 dyas at pH=2.0 was found to be the best.

  • PDF

공심법에 의한 $BaTiO_3$ 분말제조 (Preparation of $BaTiO_3$ Powder by Coprecipitation Method)

  • 김윤호;이준;한일호
    • 한국세라믹학회지
    • /
    • 제23권4호
    • /
    • pp.11-16
    • /
    • 1986
  • $BaTiO_3$ ceramics powder was prepared by coprecipitation method either in oxalic acid solution or in potassium hydroxide solution. Thermal decomposition of coprecipitated $BaTiO(C_2O_4)_2$.$4H_2O$ powder in oxalic acid solution was investigated by means of Themogravimetry Differential Thermal Analysis and X-ray Diffraction Analysis. Low temperature decomposition of coprecipitated $BaTiO(C_2O_4)_2$.$4H_2O$ caused narrow particle size distribution whereas high temperature decomposition caused fairly wide particle size distribution by partial sintering. As the reaction time increased the average particle size of coprecipitated $BaTiO_3$ powder in KOH solution was increased. The most narrow paticle size distribution was obtained when the coprecipi-tates were ripened for 4hrs.

  • PDF

알루미나-활석계에서 알루미나의 입자 크기가 테이프 케스팅 및 소결 거동에 미치는 영향 (Effects of Particle Size of Alumina on the Behaviors of Tape Casting and Sintering of Alumina-Talc System)

  • 윤원균;김호양;이정아;김정주
    • 한국세라믹학회지
    • /
    • 제34권12호
    • /
    • pp.1213-1220
    • /
    • 1997
  • Effect of particle size of alumina and amount of talc on tape casting and densification behaviors of alumina-talc system were investigated. The pseudoplastic behaviors of slurries increased with increase in amount of talc addition and decrease in alumina particle size. In case of using coarse alumina powder, densification of specimens were accelerated with increase of sintering temperature and amount of talc addition. On the contrary, fine alumina powder retarded of rearrangement of alumina particle during liquid phase sintering due to premature densification of alumina matrix region before formation of liquid phase and then densification of specimens were suppressed with increase of sintering temperature and amount of talc addition.

  • PDF