• Title/Summary/Keyword: Ceramic oxides

Search Result 246, Processing Time 0.027 seconds

Thermal displacement minimization of an oxide target for bonding process by finite element analysis and optimal design (유한요소해석과 최적설계 기법을 활용한 증착용 산화물타겟 접합공정에서의 열 변형 최소화 연구)

  • Cha, Hanyoung;Chung, Chan-Yeup
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.5
    • /
    • pp.208-213
    • /
    • 2020
  • In this research, design optimization was investigated using the finite element analysis and the optimal design technique based on the PQRSM algorithm to minimize the thermal deformation of IGZO oxide in a target module in which IGZO oxide and a copper backplate are bonded to each other. In order to apply the optimal design technique in conjunction with finite element analysis, the x-coordinate of lower supports and upper fixed boards used as design valuables, and the optimal design was performed to minimize the thermal displacement of IGZO materials as the objective function. After the optimization process, the thermal displacement within IGZO oxide could be reduced to 42 % comparing with the initial model. The result is thought to be useful in the industry as it can reduce the thermal deformation of target oxides materials only by changing the position of the subsidiary materials during the bonding process.

Review of the Research and Development of Ceramic Matrix Composite Materials and Future Works (세라믹 매트릭스 복합재료 연구 개발 동향 및 전망)

  • Lee, Tae Ho
    • Composites Research
    • /
    • v.27 no.4
    • /
    • pp.123-129
    • /
    • 2014
  • Ceramic matrix composites (CMCs) consist of such reinforcements as carbides, nitrides, borides and oxides, which have high melting points, low density, high modulus and high strength, for the purpose of increasing toughness. These materials are used for heat shielding systems for aerospace vehicles, high-temperature gas turbine combustion chambers, turbine blades, stator vane parts, etc. Oxide CMCs are used for the components of burner and flame holder and the high-temperature gas duct. CMCs are also applied to brake disks, which are subjected to severe thermal shock, and slide bearing parts under heavy loads. The research and development of the CMC are progressed for the strategic purpose in defense and energy industry; for instance, for aerospace applications in the U.S., and for hyper-speed aircraft, gas turbines, and atomic fissions in U.S., Japan, and Europe.

Microstructure Observation of the Grain Boundary Phases in ATF UO2 Pellet with Fission Gas Capture-ability (핵분열 기체 포획 기능을 갖는 사고저항성 UO2 펠렛에서 형성되는 입계상의 미세구조 관찰)

  • Jeon, Sang-Chae;Kim, Dong-Joo;Kim, Dong Seok;Kim, Keon Sik;Kim, Jong Hun
    • Journal of Powder Materials
    • /
    • v.27 no.2
    • /
    • pp.119-125
    • /
    • 2020
  • One of the promising candidates for accident-tolerant fuel (ATF), a ceramic microcell fuel, which can be distinguished by an unusual cell-like microstructure (UO2 grain cell surrounded by a doped oxide cell wall), is being developed. This study deals with the microstructural observation of the constituent phases and the wetting behaviors of the cell wall materials in three kinds of ceramic microcell UO2 pellets: Si-Ti-O (STO), Si-Cr-O (SCO), and Al-Si-Ti-O (ASTO). The chemical and physical states of the cell wall materials are estimated by HSC Chemistry and confirmed by experiment to be mixtures of Si-O and Ti-O for the STO; Si-O and Cr-O for SCO; and Si-O, Ti-O, and Al-Si-O for the ASTO. From their morphology at triple junctions, UO2 grains appear to be wet by the Si-O or Al-Si-O rather than other oxides, providing a benefit on the capture-ability of the ceramic microcell cell wall. The wetting behavior can be explained by the relationships between the interface energy and the contact angle.

Fabrication of a MnCo2O4/gadolinia-doped Ceria (GDC) Dual-phase Composite Membrane for Oxygen Separation

  • Yi, Eun-Jeong;Yoon, Mi-Young;Moon, Ji-Woong;Hwang, Hae-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.199-204
    • /
    • 2010
  • A dual-phase ceramic membrane consisting of gadolinium-doped ceria (GDC) as an oxygen ion conducting phase and $MnCo_2O_4$ as an electron conducting phase was fabricated by sintering a GDC and $MnCo_2O_4$ powder mixture. The $MnCo_2O_4$ was found to maintain its spinel structure at temperatures lower than $1200^{\circ}C$. (Mn,Co)(Mn,Co)$O_4$ spinel, manganese and cobalt oxides formed in the sample sintered at $1300^{\circ}C$ in an air atmosphere. XRD analysis revealed that no reaction phases occurred between GDC and $MnCo_2O_4$ at $1200^{\circ}C$. The electrical conductivity did not exhibit a linear relationship with the $MnCo_2O_4$ content in the composite membranes, in accordance with percolation theory. It increased when more than 15 vol% of $MnCo_2O_4$ was added. The oxygen permeation fluxes of the composite membranes increased with increasing $MnCo_2O_4$ content and this can be explained by the increase in electrical conductivity. However, the oxygen permeation flux of the composite membranes appeared to be governed not only by electrical conductivity, but also by the microstructure, such as the grain size of the GDC matrix.

A Study on Sintering Behavior and Conductivity for NiO-doped BaZr0.85Y0.15O3-δ (NiO가 도핑된 BaZr0.85Y0.15O3-δ의 소결거동 및 전도도에 관한 연구)

  • Park, Young-Soo;Kim, Jin-Ho;Kim, Hae-Kyoung;Hwang, Kwang-Tak
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.6
    • /
    • pp.670-677
    • /
    • 2012
  • Perovskite-type oxides such as doped barium zirconate ($BaZrO_3$) show high proton conductivity and chemical stability when they are exposed to hydrogen and water vapour containing atmospheres, thus it can be applicable to the hydrogen separation and the fuel cell electrolyte membranes. However the high temperature ($1700-1800^{\circ}C$) and long sintering times (24h) are generally required to prepare the fully densified $BaZrO_3$ pellets. These sintering conditions lead to the limitation of the grain size growth and the degradation of conductivity due to the acceleration of BaO evaporation at $1200^{\circ}C$. Here we demonstrate NiO-doped $BaZr_{0.85}Y_{0.15}O_{3-{\delta}}$ with lower calcination and sintering temperature, less experimental procedure and lower process cost than the conventional mixing method. The stoichiometry of $BaZr_{0.85}Y_{0.15}O_{3-{\delta}}$ was optimized by the control of excess amount of Ba (5mol%) to minimized BaO evaporation. We found that the crystal size of NiO-doped $BaZr_{0.85}Y_{0.15}O_{3-{\delta}}$ was increased with increase of calcination temperature from XRD analysis. NiO-doped $BaZr_{0.85}Y_{0.15}O_{3-{\delta}}$ powder was calcined at $1000^{\circ}C$ for 12h when its showed the highest conductivity of $3.3{\times}10^{-2}s/cm$.

Effects of Partial Substitution of CeO2 with M2O3 (M = Yb, Gd, Sm) on Electrical Degradation of Sc2O3 and CeO2 Co-doped ZrO2

  • Shin, Hyeong Cheol;Yu, Ji Haeng;Lim, Kyoung Tae;Lee, Hee Lak;Baik, Kyeong Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.500-505
    • /
    • 2016
  • Scandia-stabilized zirconia co-doped with $CeO_2$ is a promising electrolyte for intermediate temperature SOFC, but still shows rapid degradation during a long-term operation. In this study, $CeO_2$ (1 mol%) as a stabilizer is partially substituted with lanthanum oxides ($M_2O_3$, M=Yb, Gd, Sm) to stabilize a cubic phase and thus durability in reducing atmosphere. 0.5M0.5Ce10ScSZ electrolytes were prepared by solid state reaction and sintered at $1450^{\circ}C$ for 10 h to produce dense ceramic specimens. With addition of the lanthanum oxide, 0.5M0.5Ce10ScSZ showed lower degradation rates than 1Ce10ScSZ. Since $Gd_2O_3$ showed the highest ionic conductivity among the co-dopants, an electrolyte-supported cell with 0.5Gd0.5Ce10ScSZ was prepared to compare its long-term performance with that of 1Ce10ScSZ-based cell. Maximum power density of 0.5Gd0.5Ce10ScSZ-based cell was degraded by about 2.3% after 250 h, which was much lower than 1Ce10ScSZ-based cell (4.2%).

Technology Trends in Fabrication of Nanostructures of Metal Oxides by Anodization and Their Applications (양극산화 기술을 이용한 금속산화물 나노구조 제조 및 응용 동향)

  • Choi, Jinsub;Lee, Jae Kwang;Lim, Jae Hoon;Kim, Sung Joong
    • Applied Chemistry for Engineering
    • /
    • v.19 no.3
    • /
    • pp.249-258
    • /
    • 2008
  • Nanoporous alumina with highly ordered pore arrays, which is prepared based on electrochemical anodization under the controlled conditions, has attracted great attention due to the variety of its applications. In case of porous alumina, the manipulation of nanoporous structures under different electrochemical conditions and their formation mechanisms have been studied for a long time. Recently, its principles have been applied to other valve metals. Especially, there have been a big success in the preparation of titania nanotubes via the anodization of titanium. In this paper, we review the anodization of aluminum and recent trends in anodization of Ti and other valve metals based on the principles of aluminum anodization.

Direct Microwave Sintering of Poorly Coupled Ceramics in Electrochemical Devices

  • Amiri, Taghi;Etsell, Thomas H.;Sarkar, Partha
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.390-397
    • /
    • 2022
  • The use of microwaves as the energy source for synthesis and sintering of ceramics offers substantial advantages compared to conventional gas-fired and electric resistance furnaces. Benefits include much shorter processing times and reaching the sintering temperature more quickly, resulting in superior final product quality. Most oxide ceramics poorly interact with microwave irradiation at low temperatures; thus, a more complex setup including a susceptor is needed, which makes the whole process very complicated. This investigation pursued a new approach, which enabled us to use microwave irradiation directly in poorly coupled oxides. In many solid-state electrochemical devices, the support is either metal or can be reduced to metal. Metal powders in the support can act as an internal susceptor and heat the entire cell. Then sufficient interaction of microwave irradiation and ceramic material can occur as the sample temperature increases. This microwave heating and exothermic reaction of oxidation of the support can sinter the ceramic very efficiently without any external susceptor. In this study, yttria stabilized zirconia (YSZ) and a Ni-YSZ cermet support were used as an example. The cermet was used as the support, and a YSZ electrolyte was coated and sintered directly using microwave irradiation without the use of any susceptor. The results were compared to a similar cell prepared using a conventional electric furnace. The leakage test and full cell power measurement results revealed a fully leak-free electrolyte. Scanning electron microscopy and density measurements show that microwave sintered samples have lower open porosity in the electrode support than conventional heat treatment. This technique offers an efficient way to directly use microwave irradiation to sinter thin film ceramics without a susceptor.

Hydrothermal synthesis of $PbTiO_3$ oxides with perovskite structure

  • Park, Sun-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.1
    • /
    • pp.24-30
    • /
    • 2003
  • The preparation of $PbTiO_3$ powder was carried out using the oxide starting material by hydrothermal method. The powder of a crystalline phase with perovskite structure was synthesized. The optimum conditions for the preparation of powder were as follows; hydrothermal solvent; 8M-KOH or 8M-NaOH, reaction temperature; 250~$270^{\circ}C$, run time; 10 h. The ,shape of synthesized powders were well developed crystalline faces with specific surface area of about 2.3 $\textrm m^2$/g in KOH solution and about 5.0 $\textrm m^2$/g in NaOH solution. The cell parameters of powder were a = 3.90$\AA$, c = 4.14 $\AA$ and cell volume was 57.30 $\AA^3$. The cell ratio (c/a) of powder was the same as the theoretical ratio with c/a = 1.06 and the phase transition temperature(Tc) of the powders was about $470^{\circ}C$.

Grain Size Dependence of Ionic Conductivity of Polycrystalline Doped Ceria

  • Hong, Seong-Jae
    • The Korean Journal of Ceramics
    • /
    • v.4 no.2
    • /
    • pp.122-127
    • /
    • 1998
  • Conductivities of polycrystalline ceria doped with several rare earth oxides were measured by AC admittance and DC four probe method. The conductions were separated into grain and grain boundary contributions using the complex admittance technique as well as grain size dependence of conductivity. The grain size dependence of polycrystalline conductivity, which can be adequately described by the so-called brick layer model, appears to give a more reliable measure of the grain conductivity compared to the complex admittance method. Polycrystalline resistivity(1/conductivity) increases linearly with the reciprocal of grain size. The intercept of resistivity vs. inverse grain size plot gives a measure of the grain resistivity and the slope gives a measure of the grain boundary resistivity. It was also noted that errors involved in the analysis of experimental data may be different between the complex admittance method and the impedance method. A greater resolution of the spectra was found in the complex admittance method, insofar as the present work is concerned, suggesting that the commonly used equivalent circuit may require re-evaluation.

  • PDF