DOI QR코드

DOI QR Code

Microstructure Observation of the Grain Boundary Phases in ATF UO2 Pellet with Fission Gas Capture-ability

핵분열 기체 포획 기능을 갖는 사고저항성 UO2 펠렛에서 형성되는 입계상의 미세구조 관찰

  • Jeon, Sang-Chae (School of Materials Science and Engineering, Changwon National University) ;
  • Kim, Dong-Joo (ATF Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Kim, Dong Seok (ATF Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Kim, Keon Sik (ATF Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Kim, Jong Hun (ATF Technology Development Division, Korea Atomic Energy Research Institute)
  • 전상채 (창원대학교 신소재공학부) ;
  • 김동주 (한국원자력연구원 ATF 기술개발부) ;
  • 김동석 (한국원자력연구원 ATF 기술개발부) ;
  • 김건식 (한국원자력연구원 ATF 기술개발부) ;
  • 김종헌 (한국원자력연구원 ATF 기술개발부)
  • Received : 2020.03.24
  • Accepted : 2020.04.03
  • Published : 2020.04.28

Abstract

One of the promising candidates for accident-tolerant fuel (ATF), a ceramic microcell fuel, which can be distinguished by an unusual cell-like microstructure (UO2 grain cell surrounded by a doped oxide cell wall), is being developed. This study deals with the microstructural observation of the constituent phases and the wetting behaviors of the cell wall materials in three kinds of ceramic microcell UO2 pellets: Si-Ti-O (STO), Si-Cr-O (SCO), and Al-Si-Ti-O (ASTO). The chemical and physical states of the cell wall materials are estimated by HSC Chemistry and confirmed by experiment to be mixtures of Si-O and Ti-O for the STO; Si-O and Cr-O for SCO; and Si-O, Ti-O, and Al-Si-O for the ASTO. From their morphology at triple junctions, UO2 grains appear to be wet by the Si-O or Al-Si-O rather than other oxides, providing a benefit on the capture-ability of the ceramic microcell cell wall. The wetting behavior can be explained by the relationships between the interface energy and the contact angle.

Keywords

References

  1. Y. H. Koo, J. H. Yang, J. Y. Park, K. S. Kim, H. G. Kim, D. J. Kim, Y. I. Jung and K. W. Song: Nucl. Technol., 186 (2014) 295. https://doi.org/10.13182/NT13-89
  2. C. P. Deck, G. M. Jacobsen, J. Sheeder, O. Gutierrez, J. Zhang, J. Stone, H. E. Khalifa and C. A. Back: J. Nucl. Mater., 466 (2015) 667. https://doi.org/10.1016/j.jnucmat.2015.08.020
  3. X. Wu, T. Kozlowski and J. D. Hales: Ann. Nucl. Energy, 85 (2015) 763. https://doi.org/10.1016/j.anucene.2015.06.032
  4. J. H. Park, H. G. Kim, J. Y. Park, Y. I. Jung, D. J. Park and Y. H. Koo: Surf. Coat. Technol., 280 (2015) 256. https://doi.org/10.1016/j.surfcoat.2015.09.022
  5. D. J. Kim, Y. W. Rhee, J. H. Kim, K. S. Kim, J. S. Oh, J. H. Yang, Y. H. Koo and K. W. Song: J. Nucl. Mater., 462 (2015) 289. https://doi.org/10.1016/j.jnucmat.2015.04.003
  6. K. D. Johnson, A. M. Raftery, D. A. Lopes and J. Wallenius: J. Nucl. Mater., 477 (2016) 18. https://doi.org/10.1016/j.jnucmat.2016.05.004
  7. S. C. Jeon, K. S. Kim, D. J. Kim, D. S. Kim, J. H. Kim, J. Yoon and J. H. Yang: J. Nucl. Fuel Cycle Waste Technol., 17 (2019) 37. https://doi.org/10.7733/jnfcwt.2019.17.1.37
  8. H. G. Kim, I. H. Kim, Y. I. Jung, D. J. Park, J. Y. Park and Y. H. Koo: J. Nucl. Mater., 465 (2015) 531. https://doi.org/10.1016/j.jnucmat.2015.06.030
  9. Y. I. Jung, H. G. Kim, I. H. Kim, S. H. Kim, J. H. Park, D. J. Park, J. H. Yang and Y. H. Koo: Mater. Des., 116 (2017) 325. https://doi.org/10.1016/j.matdes.2016.12.023
  10. D. J. Kim, K. S. Kim, D. S. Kim, J. S. Oh, J. H. Kim, J. H. Yang and Y. H. Koo: Nucl. Eng. Technol., 50 (2018) 253. https://doi.org/10.1016/j.net.2017.12.008
  11. S. C. Jeon, D. J. Kim, D. S. Kim, K. S. Kim, J. H. Kim, J. H. Yoon and J. H. Yang: Ceram. Int., 45 (2019) 15754. https://doi.org/10.1016/j.ceramint.2019.05.038
  12. L. N. Grossman: Rev. Int. Hautes Temper. Refract., 16 (1979) 255.
  13. J. Matsunaga, K. Y. Takagawa, K. Kusagaya, K. Une, R. Yuda and M. Hirai: 2009 International LWR Fuel Performance Meeting (Top Fuel 2009), Paris, France (2009).
  14. J. Matsunaga, K. Une and K. Kusagaya: 2010 International LWR Fuel Performance Meeting (Top Fuel 2010), Orlando, USA (2010).
  15. A. Roine: Outokumpu HSC Chemistry 9 for Windows, Outokumpu Research Oy: Pori, Finland (2002).
  16. R. M. Leckie and E. P. Luther: Tech. Rep., LA-UR-13- 22252 (2013) M3FT-13LA020206.
  17. C. Riglet-Martial, P. Martin, D. Testemale, C. Sabathier- Devals, G. Carlot, P. Matheron, X. Iltis, U. Pasquet, C. Valot, C. Delafoy and R. Largenton: J. Nucl. Mater., 447 (2014) 63. https://doi.org/10.1016/j.jnucmat.2013.12.021