• 제목/요약/키워드: Ceramic matrix composites

검색결과 217건 처리시간 0.027초

Y2O3-카본 복합체의 전기전도성에 미치는 소결온도의 영향 (Effects of Sintering Temperature on the Electrical Conductivities of the Y2O3-Carbon Composites)

  • 최관영;오윤석;김성원;김형순;박종훈;이성민
    • 한국세라믹학회지
    • /
    • 제49권2호
    • /
    • pp.173-178
    • /
    • 2012
  • The $Y_2O_3$ ceramics have been widely used as plasma resistant materials in the semiconductor industry. In this study, composites made of plasma resistant $Y_2O_3$ and electrically conductive carbon have been produced. The electrical properties of this composite were measured with respect to the size, volume fraction of the conductive carbon phase, and sintering temperature. When micro-sized carbon was used, the composites were insulating up to 5 wt% addition of the carbon. However, when nano-sized carbon of around 60 ~100 nm was used, the composites became conductive over threshold volume fraction of carbon, which increased with increasing sintering temperature. This behavior of electrical conductivity of the composites was discussed in terms of the percolation theory. The percolation threshold of the conductivity seemed to be affected by the grain growth and coalescences of dispersed conductive carbon phases with grain growth of matrix $Y_2O_3$.

페놀수지 탄화 코팅법을 이용한 섬유강화 복합재료 계면 형성에 관한 연구 (Novel Phenol Resin Carbonizing Method for Carbon Interlayer Coating between Reinforcing Fiber and Matrix in Fiber Reinforced Ceramic Composite)

  • 김세영;우상국;한인섭
    • 한국세라믹학회지
    • /
    • 제46권3호
    • /
    • pp.301-305
    • /
    • 2009
  • The novel carbon coating process for interlayer of fiber reinforced ceramic composites between fiber and matrix was performed by carbonizing phenolic resin solution that coated on fiber surface in $N_2$ atmosphere at $600^{\circ}C$ to improve the strength and fracture toughness of CMC(ceramic matrix composite). 160 nm carbon layer was coated on fiber surface with 5 vol% of phenolic resin solution. Since the process temperature ($600^{\circ}C$) is lower than chemical vapor deposition($900{\sim}1000^{\circ}C$), the strength and toughness could be preserved. Furthermore the coating thickness uniformity was improved to 8% of deviation along the stacking sequence. Therefore, prevention from fiber degradation during coating process and controlling coating thickness uniformity along the preform depth were achieved by coating with phenolic resin carbonizing method.

Hydroxyapatite Zirconia 계 복합 Bioceramics에 관한 연구 (A Study on the Hydroxyapatite-Zirconia Composite Bioceramics)

  • 이종필;최현국;송종택;최상흘
    • 한국세라믹학회지
    • /
    • 제28권4호
    • /
    • pp.289-296
    • /
    • 1991
  • Hydroxyapatite (HAp)-zirconia bioceramics, which have excellent biocompatibility with tissue of bone and tooth and good mechanical properties, were synthesized, and their properties and biocompatibility were investigated. HAp powders were synthesized with Ca/P=1.67 and pH 11 by precipitation method. A fine spherical monodispersed ZrO2 powders were prepared by metal alkoxide method, and then they were partially stabilized with 10 mol% CaO by solid state reaction at 1300℃. HAp-zirconia composites were prepared by sintering of these HAp mixed with various amount CaO-partially stabillized zirconia (PSZ). When HAp containing 15 wt% PSZ with 10 mol% CaO (PSZ(10C)) were sintered at 1250℃, it was prevented to decompose into TCP and ZrO2 was uniformly dispersed at HAp matrix. Mechanical strength of these sintered bodies were increased by addition of 15 wt% PSZ(10C), the bending strength of compacts fired at 1250℃ was 165 MPa. HAp-PSZ composites chemically bonded each other in Ringer's solution and the component of bonded layer was HAp. These composites did not prevent cell-growing and exhibit any cytotoxic effects.

  • PDF

보강재로 첨가된 $Si_3N_4$ Whisker와 SiC Platelet가 $\alpha/\beta$ Sialon 복합체의 상변태와 기계적 물성에 미치는 영향 (Effect of $Si_3N_4$ Whisker and SiC Platelet Addition on Phase Transformation and Mechanical Properties of the $\alpha/\beta$ Sialon Matrix Composites)

  • 한병동;임대순;박동수;이수영;김해두
    • 한국세라믹학회지
    • /
    • 제32권12호
    • /
    • pp.1417-1423
    • /
    • 1995
  • α/β sialon based composites containing silicon nitride whisker and silicon carbide platelet were fabricated by hot pressing. Effect of the reinforcing agents on the α to β phase transformation of the sialon as well as on the mechanical properties was investigated. Silicon nitride whisker and silicon carbide platelet promoted the phse transformation. TEM/EDS analysis revealed that the grain containing the whisker had 'core-rim' structure; core being high purity Si3N4 whisker and rim being β-sialon. Flexural strength of the composite decreased with the reinforcement addition which, on the other hand, improved fracture toughness of it. High temperature strength was measured at 1300℃ to be about 130 MPa lower than that measured at RT for the whisker reinforced composites.

  • PDF

Sol-Gel법을 이용한 (0.8PPV+0.2DMPPV)/Silica Glass, Borosilicate Glass 복합체의 합성과 그 특성 (Synthesis and Their Properties of (0.8PPV+0.2DMPPV)/Silica Glass, Borosilicate Glass Composites by Sol-Gel Process)

  • 이병우;김병호;윤영권;한원택
    • 한국세라믹학회지
    • /
    • 제34권9호
    • /
    • pp.993-1001
    • /
    • 1997
  • The (0.8PPV+0.2DMPPV) copolymer and silica/borosilicate composites were synthesized by sol-gel process. The organic-inorganic hybrid solution was prepared by using of (0.8PPV+0.2DMPPV) copolymer precursor solution as a raw material for organic components and TEOS and TMB for glass components. Then by drying the solution in vacuum at 5$0^{\circ}C$ for 7days and subsequent heat treatment in vacuum at 15$0^{\circ}C$~30$0^{\circ}C$ for 2h~72h with heating rate of 0.2$^{\circ}C$/min and 1.8$^{\circ}C$/min, the organic-inorganic composites were synthesized. Microstructural evolution of the composites was characterized by DSC, IR spectrocopy, UV/VIS spectroscopy, and TEM. Elimination of the polymer precursor and degradation of the polymer were observed by DSC and Si-O and trans C=C absorption peaks were identified by IR spectra. The polymer was found to be successfully incorporated into the glass matrix and it was confirmed by the absorption peaks from the polymer in the UV/VIS spectra and the TEM results. The absorption peak of the composites was found to shift toward short wavelength side compared to that of the pure polymer and the amount of the blue shift increased with increasing the heat treatment temperature and heat treatment time and with decreasing the heating rate.

  • PDF

Whisker Growing Assisted 화학침착 공정으로 제조된 SiCf/SiC 복합체의 파괴거동과 기계강도 평가 (Fracture Behaviors and Mechanical Properties of SiCf/SiC Composites Prepared by the Whisker Growing Assisted CVI Process)

  • 강석민;김원주;윤순길;박지연
    • 한국세라믹학회지
    • /
    • 제46권5호
    • /
    • pp.484-487
    • /
    • 2009
  • $SiC_f$/SiC composites with whiskers and pyrolytic carbon (PyC) coated whiskers in the matrix were fabricated for enhancement of the fracture behaviors by the whisker growing assisted chemical vapor infiltration (WA-CVI) process, respectively. $SiC_f$/SiC composites were also prepared by the conventional CVI process as reference material. The mechanical properties and fracture behaviors were analyzed by comparison of the two types of composites prepared by WA-CVI and conventional CVI. The densities of $SiC_f$/SiC composites were in the range of $2.6{\sim}2.65g/cm^3$. The flexural strengths of composite with whiskers and with those coated by PyC were 650 MPa and 600 MPa, respectively. The tensile strength of composites with whiskers was ${\sim}285$ MPa.

중석이 첨가된 고분자 유기물 열분해 방법에 의한 신세라믹복합체 개발 (Development of Novel Ceramic Composites by Active Filler Controlled Polymer Pyrolysis with Tungsten)

  • 강건택;김득중
    • 한국세라믹학회지
    • /
    • 제35권9호
    • /
    • pp.939-944
    • /
    • 1998
  • 실리콘함유 고분자(Polysiloxane)의 세라믹변환과정에서의 부피수축효과를 조절하기 위하여 활성화금속으로 중석을 첨가하여 열분해 및 합성반응을 통해 신 세라믹 복합체를 개발하고 이의 세라믹화 과정이나 물성을 조사하였다. 제조된 시편의 미세조직은 고분자로부터 야기된 $S_{1}$-O-C게열의 Glass기지상과, 분해잔여물(고상,기상)등과 활성화금속과의 반응르로 생성된 고경도의 탄호물로 이루어져 있어 향후 내마모재료로서의 응용을 기대할 수 있을 것이다. 제조된 복합체의 물성은 반응조건에 많이 의존함을 알 수 있었다. 1400~$1500^{\circ}C$에서 열분해 시켜 제조한 복합체의 밀도는 95% 이상의 상대밀도와, 경도 값은 7~8GPa 정도이고 탄성률은 220~230 GPa, 파괴인성응ㄴ 6~6.8$MPam^{1/2}$, 파괴강도는 380~470 MPs정도의 값을 나타내었다.

  • PDF

방전플라즈마 소결에 의한 자기 통전식 SiC계 세라믹 발열체 개발 (Development of Electroconductive SiC Ceramic Heater by Spark Plasma Sintering)

  • 신용덕;최원석;고태헌;이정훈;주진영
    • 전기학회논문지
    • /
    • 제58권4호
    • /
    • pp.770-776
    • /
    • 2009
  • The composites were fabricated by adding 0, 15, 30, 45[vol.%] $ZrB_2$ powders as a second phase to SiC matrix. The physical, mechanical and electrical properties of electroconductive SiC ceramic composites by spark plasma sintering(SPS) were investigated. Reactions between ${\beta}$-SiC and $ZrB_2$ were not observed in the XRD and the phase analysis of the electroconductive SiC ceramic composites. The relative density of mono ${\beta}$-SiC, ${\beta}$-SiC+15[vol.%]$ZrB_2$, ${\beta}$-SiC+30[vol.%]$ZrB_2$ and ${\beta}$-SiC+45[vol.%]$ZrB_2$ composites are respectively 99.24[%], 87.53[%], 96.41[%] and 98.11[%] Phase analysis of the electroconductive SiC ceramic composites by XRD revealed mostly of ${\beta}$-SiC, $ZrB_2$ and weakly of $ZrO_2$ phase. The flexural strength showed the lowest of 114.44[MPa] for ${\beta}$-SiC+15[vol.%]$ZrB_2$ powders and showed the highest of 210.75[MPa] for composite no added with $ZrB_2$ powders at room temperature. The trend of the mechanical properties of the electroconductive SiC ceramic composites is accorded with the trend of the relative density. The electrical resistivity of the electroconductive SiC ceramic composites decreased with increased $ZrB_2$ contents. The electrical resistivity of mono ${\beta}$-SiC, ${\beta}$-SiC+15[vol.%]$ZrB_2$, ${\beta}$-SiC+30[vol.%]$ZrB_2$ and ${\beta}$-SiC+45[vol.%]$ZrB_2$ composites are respectively $4.57{\times}10^{-1},\;2.13{\times}10^{-1},\;2.68{\times}10^{-2}\;and\;1.99{\times}10^{-2}[{\Omega}{\cdot}cm]$ at room temperature. The electrical resistivity of mono ${\beta}$-SiC and ${\beta}$-SiC+15[vol.%]$ZrB_2$ are negative temperature coefficient resistance(NTCR) in temperature ranges from $25[^{\circ}C]\;to\; 100[^{\circ}C]$. The electrical resistivity of ${\beta}$-SiC+30[vol.%]$ZrB_2$ and ${\beta}$-SiC+45[vol.%]ZrB_2$ are positive temperature coefficient resistance(PTCR) in temperature ranges from $25[^{\circ}C]\;to\;100[^{\circ}C]$. It is convinced that ${\beta}$-SiC+30[vol.%]$ZrB_2$ composites by SPS for heater or ignitors can be applied.

Saffil/SiCp을 이용한 금속 복합재료의 상온 마모 거동 (Wear Behavior of Saffil/SiCp reinforced Metal Matrix Composites at the room temperature)

  • 조종인;한경섭
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 춘계학술발표대회 논문집
    • /
    • pp.46-49
    • /
    • 2003
  • Aluminum based metal matrix composites(MMCs) are well known for their high specific strength, stiffness and hardness. They are gaining further importance because of their high wear resistance. In this study, Al/Saffil-20%, Al/Saffil-5%/Al2O3(particle type)-15% and Al/Saffil-5%/SiC(particle type)-15% hybird MMCs' wear behavior were characterized by the pin-on-disk test under various normal load The superior wear resistance was exhibited at Al/Saffil-5%/SiC(particle type)-15% MMCs. And this MMCs' predominant wear mechanism is subsurface cracking in the low load wear regime. Others(Al/Saffil-20%, Al/Saffil-5%/Al2O3(particle type)-15%) showed the similar wear resistance with each other at the same test condition. In the low load & room temperature condition, the wear resistance was improved due to the high hardness of the ceramic reinforcements. As the test load increased, the wear properties were governed by the wear properties of matrix.

  • PDF

고온가압소결한 SiC-TiC 복합체의 기계적, 전기적 특성 (Mechanical and Electrical Properties of Hot-Pressed Silicon Carbide-Titanium Carbide Composites)

  • 박용갑
    • 한국세라믹학회지
    • /
    • 제32권10호
    • /
    • pp.1194-1202
    • /
    • 1995
  • The influences of TiC additions to the α-SiC on microstructural, mechanical, and electrical properties were investigated. Electrical discharge machinability of SiC-TiC composites was also studied. Samples were prepared by adding 30, 45, 60 wt.% TiC particles as a second phase to a SiC matrix. Sintering of SiC-TiC composites was done by hot pressing under a vacuum atmospehre from 1000 to 2000℃ with a pressure of 32 MPa and held for 90 minutes at 2000℃. Samples obtained by hot pressing were fully dense with the relative densities over 99% except 60wt.% TiC samples. Flexural strength and fracture toughness of the samples were increased with the TiC content. In case of SiC samples containing 45 wt.% TiC, the fracture toughness showed 90% increase compared to that of monolithic SiC sample. The crack propagation and crack deflection were observed with a SEM for etched samples after Vicker's indentation. The electrical resistivities of SiC-TiC composites were measured utilizing the four-point probe. The electrical dischage machining of composites was also conducted to evaluate the machinability.

  • PDF