• 제목/요약/키워드: Ceramic/metal joint

검색결과 41건 처리시간 0.023초

$Al_2O_3/Al$ 6061의 접합부 계면특성에 관한 연구 (A study on Brazing Interfacial Properties of $Al_2O_3/Al$ 6061)

  • 서상용;안병건;이규용
    • 동력기계공학회지
    • /
    • 제7권3호
    • /
    • pp.74-79
    • /
    • 2003
  • Alumina($Al_2O_3$) and Al 6061 were brazed by using Al-12wt% Si filler metal in a high vacuum environment. The interfacial microstructure and mechanical properties of the joints were investigated. The results obtained were as follows. (1) The maximum tensile strength of 54Mpa was acquired at the processing conditions of high vacuum ($3{\times}10^{-6}Torr$), $620^{\circ}C$ and 10min, but this condition will not be used in the industrial area due to high evaporation of Al alloy composition. (2) Reaction products for holding time and brazing temperature worked as stress relieve layer and the fractures after the mechanical properties test were occurred to the ceramic side or reaction layer. (3) The glancing angle X-ray diffraction analysis for the reaction product of $Al_2O_3/Al$ 6061 were processed. the joint strengths were low due to existed $Al_2Si_5\;and\;SiO_2$.

  • PDF

Efficacy of Ag-CuO Filler Tape for the Reactive Air Brazing of Ceramic-Metal Joints

  • Kim, Myung Dong;Wahid, Muhamad FR;Raju, Kati;Kim, Seyoung;Yu, Ji Haeng;Park, Chun Dong;Yoon, Dang-Hyok
    • 한국세라믹학회지
    • /
    • 제55권5호
    • /
    • pp.492-497
    • /
    • 2018
  • This paper reports the efficacy of tape casting using an Ag-10 wt% CuO filler for the successful joining of a sintered $Ce_{0.9}Gd_{0.1}O_{2-{\delta}}-La_{0.7}Sr_{0.3}MnO_{3{\pm}{\delta}}$ (GDC-LSM) ceramic with a SUS 460 FC metal alloy by reactive air brazing. The as-prepared green tape was highly flexible without drying cracks, and the handling was easy when used as a filler material for reactive air brazing. Heat treatment for the GDC-LSM/SUS 460 FC joint was performed at $1050^{\circ}C$ for 30 min in air. Microstructural observations indicated a reliable and compact joining. The room temperature mechanical shear strength of the as-brazed joints was $60{\pm}8MPa$ with a cohesive failure. The flexural strength of joints was measured from room temperature up to $850^{\circ}C$, where the strength retention revealed to be almost 100% at $500^{\circ}C$. However, the joints showed a degradation in strengths at 800 and $850^{\circ}C$, exhibiting strength retentions of 57% and 37%, respectively.

레이저 용접과 납착법으로 연결된 귀금속성 금속-도재 합금의 물리적 성질 (Mechanical Properties of Precious Metal-Ceramic Alloy Joined by the Laser-Welding and the Soldering Method)

  • 오정란;이석형;우이형
    • 구강회복응용과학지
    • /
    • 제19권4호
    • /
    • pp.269-279
    • /
    • 2003
  • This study investigated the mechanical properties of precious metal-ceramic alloy joined by the laser-welding and the soldering compared with the parent metal. Twenty-four tensile specimens were cast in precious metal-ceramic alloy and divided into three groups of eight. All specimens in the control group(group 1) were left in the as-cast condition. Group 2 and 3 were the test specimens, which were sectioned at the center. Eight of sectioned specimens were joined by soldering with a propane-oxygen torch, and the remaining specimens were joined by laser-welding. After joining, each joint diameter was measured, and then tested to tensile failure on an Instron machine. Failure loads were recorded, and then fracture stress(ultimate tensile strength), 0.2% yield strength and % elongation calculated. These data for three groups were subjected to a one-way analysis of variance(ANOVA). Neuman-Keuls post hoc test was then used to determine any significant differences between groups. The fracture locations, fracture surfaces were examined by SEM(scanning electron microscope). The results were as follows: 1) The tensile strength and 0.2% yield strength of the soldered group($280.28{\pm}49.35MPa$, $160.24{\pm}26.67MPa$) were significantly less than both the as-cast group($410.99{\pm}13.07MPa$, $217.82{\pm}17.99MPa$) and the laser-welded group($383.56{\pm}59.08MPa$, $217.18{\pm}12.96MPa$). 2) The tensile strength and 0.2% yield strength of the laser-welded group were about each 98%, 99.7% of the as-cast group. There were no statistically significant differences in these two groups(p<0.05). 3) The percentage elongations of the soldered group($3.94{\pm}2.32%$) and the laser-welded group($5.06{\pm}1.08%$) were significantly less than the as-cast group($14.25{\pm}4.05%$) (p<0.05). 4) The fracture of the soldered specimens occurred in the solder material and many porosities were showed at the fracture site. 5) The fracture of the laser-welded specimens occurred also in the welding area, and lack of fusion and a large void was observed at the center of the fracture surface. However, the laser-welded specimens showed a ductile failure mode like the as- cast specimens. The results of this study indicated that the tensile strengths of the laser-welded joints were comparable to those of the as-cast joints and superior to those of the soldered joints.

은(Ag)계 활성금속을 사용한 질화 알미늄(AlN)과 Cu의 브레이징 (Brazing of Aluminium Nitride(AlN) to Copper with Ag-based Active Filler Metals)

  • 허대;김대훈;천병선
    • Journal of Welding and Joining
    • /
    • 제13권3호
    • /
    • pp.134-146
    • /
    • 1995
  • Aluminium nitride(AlN) is currently under investigation as potential candidate for replacing alumium oxide(Al$_{2}$ $O_{3}$) as a substrate material for for electronic circuit packaging. Brazing of aluminium nitride(AlN) to Cu with Ag base active alloy containing Ti has been investigated in vacuum. Binary Ag$_{98}$ $Ti_{2}$(AT) and ternary At-1wt.%Al(ATA), AT-1wt.%Ni(ATN), AT-1wt.% Mn(ATM) alloys showed good wettability to AlN and led to the development of strong bond between brate alloy and AlN ceramic. The reaction between AlN and the melted brazing alloys resulted in the formation of continuous TiN layers at the AlN side iterface. This reaction layer was found to increase by increase by increasing brazing time and temperature for all filler metals. The bond strength, measured by 4-point bend test, was increased with bonding temperature and showed maximum value and then decreased with temperature. It might be concluded that optimum thickness of the reaction layer was existed for maximum bond strength. The joint brazed at 900.deg.C for 1800sec using binary AT alloy fractured at the maximum load of 35kgf which is the highest value measured in this work. The failure of this joint was initiated at the interface between AlN and TiN layer and then proceeded alternately through the interior of the reaction layer and AlN ceramic itself.

  • PDF

인공관절에 사용되는 UHMWPE의 내마모성 향상에 관한 연구 (An enhancement in wear property of UHMWPE used in joint prosthesis)

  • 김경태;이창우;최재봉;최귀원
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1996년도 추계학술대회
    • /
    • pp.3-6
    • /
    • 1996
  • The Ultra-high molecular weight polyethylene (UHMWPE) is exclusivity used as the articulation component with metal or ceramic materials in artificial joint prosthesis because of its good mechanical properties. In the long term however, wear of UHMWPE causes complex problems and hence causes loosening of He prosthesis. In this study, we tried to enhance the wear property of UHMWPE by attaching a hydrophilic graft on the UHMWPE surface and by improving surface hardness without deteriorating the mechanical properties of UHMWPE. This was achieved by ion implantation and by ${\gamma}$-irradiation to the surface in acrylic acid solution and by photo-polymerization in divinylbenzen (DVB), diallysophthalate (DAIP) solution. The wear test was performed by a wear testing machine of ball-on-disk type devised by the authors. The UHMWPE with hydrophlic surface and increased surface hardness developed by above treatments showed less volumetric wear.

  • PDF

Nanoscale Longitudinal Normal Strain Behavior of ${Si_3}{N_4}$-to-ANSI 304L Brazed Joints under Pure Bending Condition

  • Seo, D.W.;Lim, J.K.
    • International Journal of Korean Welding Society
    • /
    • 제4권1호
    • /
    • pp.46-52
    • /
    • 2004
  • To combine the mechanical advantages of ceramics with those of metals, one often uses both materials within one composite component. But, as known, they have different material properties and fracture behaviors. In this study, a four-point bending test is carried out on $Si_3N_4$ joined to ANSI 304L stainless steel with a Ti-Ag-Cu filler and a Cu interlayer at room temperature to evaluate their longitudinal strain behaviors. And, to detect localized strain, a couple of strain gages are pasted near the joint interfaces of the ceramic and metal sides. The normal strain rates are varied from $3.33{\times}10^5$ to $3.33{\times}10^{-1}s^{-1}$ Within this range, the experimental results showed that the four-point bending strength and the deflection of the interlayer increased with increasing the strain rate.

  • PDF

비정상 열 하중을 받는 이질재료의 열량 집중 계수 해석 (Thermal flow intensity factor for non-homogeneous material subjected to unsteady thermal load)

  • 김귀섭
    • 한국항공운항학회지
    • /
    • 제16권4호
    • /
    • pp.26-34
    • /
    • 2008
  • This article provides a comprehensive treatment of cracks in non-homogeneous structural materials such as functionally graded materials (FGMs). It is assumed that the material properties depend only on the coordinate perpendicular to the crack surfaces and vary continuously along the crack faces. By using laminated composite plate model to simulate the material non-homogeneity, we present an algorithm for solving the system based on Laplace transform and Fourier transform techniques. Unlike earlier studies that considered certain assumed property distributions and a single crack problem, the current investigation studies multiple crack problem in the FGMs with arbitrarily varying material properties. As a numerical illustration, transient thermal flow intensity factors for a metal-ceramic joint specimen with a functionally graded interlayer subjected to sudden heating on its boundary are presented. The results obtained demonstrate that the present model is an efficient tool in the fracture analysis of non-homogeneous material with properties varying in the thickness direction.

  • PDF

산화아연(Zinc oxide) 나노입자와 은나노 와이어(Silver nanowire)를 함유한 Poly(vinylidene fluoride) 복합나노섬유 제조 및 동작 센서로의 적용 가능성 탐색 (Fabrication of Poly(Vinylidene Fluoride) Nanocomposite Fibers Containing Zinc Oxide Nanoparticles and Silver Nanowires and their Application in Textile Sensors for Motion Detection and Monitoring)

  • 양혁주;이승신
    • 한국의류학회지
    • /
    • 제47권3호
    • /
    • pp.577-592
    • /
    • 2023
  • In this study, nanofiber-based textile sensors were developed for motion detection and monitoring. Poly(vinylidene fluoride) (PVDF) nanofibers containing zinc oxide (ZnO) nanoparticles and silver nanowires (AgNW) were fabricated using electrospinning. PVDF was chosen as a piezoelectric polymer, zinc oxide as a piezoelectric ceramic, and AgNW as a metal to improve electric conductivity. The PVDF/ZnO/AgNW nanocomposite fibers were used to develop a textile sensor, which was then incorporated into an elbow band to develop a wearable smart band. Changes in the output voltage and peak-to-peak voltage (Vp-p) generated by the joint's flexion and extension were investigated using a dummy elbow. The β-phase crystallinity of pure PVDF nanofibers was 58% when analyzed using Fourier transform infrared spectroscopy; however, the β-phase crystallinity increased to 70% in PVDF nanofibers containing ZnO and to 78% in PVDF nanocomposite fibers containing both ZnO and AgNW. The textile sensor's output voltage values varied with joint-bending angle; upon increasing the joint angle from 45° to 90° to 150°, the Vp-p value increased from 0.321 Vp-p to 0.542 Vp-p to 0.660 Vp-p respectively. This suggests that the textile sensor can be used to detect and monitor body movements.

Evaluation of the fracture resistance of all-ceramic zirconia posts by 3 different methods

  • Jeong, Seung-Mi;Chung, Chae-Heon;Kang, Dong-Wan;Ludwig, Klaus;Kern, Matthias;Huels, Alfons
    • 대한치과보철학회지
    • /
    • 제38권6호
    • /
    • pp.757-764
    • /
    • 2000
  • Statement of the problem. All-ceramic post-and-core restorations offer a number of advantages compared with systems that use metal build-ups. In certain clinical cases, however, fractures at the joint between the post and core build-up have been reported. Purpose. The objective, therefore, is to improve the joint between the post and the core build-up. Material and methods. Three different methods were used to prepare all-ceramic post-and-core restorations; pressing IPS Empress core build-ups to CosmoPost zirconia posts, cement-ing IPS Empress core build-ups to CosmoPost zirconia posts and Celay-milling of zirconia blanks. A series of ten restorations was prepared for each of the three methods. The post-and-core complexes were tested to failure with the load applied perpendicular to the post axis. The load and deflection at fracture were recorded. Results. The highest breaking load and highest deflection were recorded for the cementing technique with values of 25.3 N and $394{\mu}m$, respectively, The corresponding values for the pressed core build-ups and the milled zirconia core build-ups were 22 N and $301{\mu}m$, and 13 N and $160{\mu}m$, respectively. All the differences are statistically significant (p=0.05). Regarding the load-dependence of the deflection, the cemented core build-ups again demonstrated the highest value with $15.5{\mu}m/N$. The difference in the values of $13.6{\mu}m/N\;and\;13{\mu}m/N$ recorded for the pressed-on and milled core build-ups, respectively, were statistically insignificant. Conclusion. In regard to the high fracture resistance of zirconia post, adhesive cementing the core build-up to the post offers a viable alternative to the conventional pressing technique. The elastic bond between the rigid high-strength zirconia post and the core build-up presents an additional advantage.

  • PDF

경계요소법을 이용한 이종재료 접착.접합재의 응력 및 응력세기계수 해석 (Analysis of stress and stress intensity factor in bonded dissimilar materials by boundary element method)

  • 이원;정남용;유영철;정의섭
    • 대한기계학회논문집A
    • /
    • 제21권9호
    • /
    • pp.1357-1363
    • /
    • 1997
  • Currently it is increasing to use th bonded dissimilar materials in the various field of advanced engineering such as the highly rigid and lighter vehicle, plastic molding LSI package and metal/ceramic bonded joint. In spite of such a wide application of the bonded dissimilar materials, the evaluation method of the bonding strength has not been established yet. Therefore in this paper we analyze the interface crack problem by introducing fracture mechanics parameters as the basic research about estimating of the strength of adhesive joints. The variation of stress intensity factor according to the elastic modulus of adherend and thickness of bonded layer are investigated. Numerical results are based on the results of boundary element analysis of four different type butt joints subjected to uniaxial tension loading.