• Title/Summary/Keyword: Centrifugal cast

Search Result 39, Processing Time 0.024 seconds

EFFECTS OF THE RECASTING ON THE PHYSICAL PROPERTIES OF Ni-Cr BASED ALLOY FOR FUSED PORCELAIN (도재소부용(陶材燒付用) Ni-Cr 합금(合金)의 재주조(再鑄造)가 물리적(物理的) 성질(性質)에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Kim, S.I.;Kim, C.C.;Park, N.S.;Han, M.H.
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.19 no.1
    • /
    • pp.55-60
    • /
    • 1981
  • Some physical properties of Ni-Cr based alloy for porcelain veneering were compared after repeated casting without the addition of any new alloy. The specimen were cast in a centrifugal caster with an oxygen-propane torch at optimum temperature. The obtained results were as follows: 1. The yield strength and hardness of the second generation were no significant differences compared with first generation but the yield strength and hardness of the third generation slightly decrased. 2. The ultimate tensile strength and elongation appeared to decrease slightly in second, third generations. 3. The tensile fractured facets of the first generation specimen were normal in all specimen, but in the second generation there were six tensile specimen out of ten, in the third there were four tensile specimen out of ten.

  • PDF

Quasi-Three Dimensional Calculation of Compressible Flow in a Turbomachine considering Irreversible H-S Flow (터어보 기계(機械) 내부(內部)의 비가역(非可逆) H-S유동(流動)을 고려(考慮)한 준(準)3차원(次元) 유동해석(流動解析))

  • Cho, Kang-Rae;Oh, Jong-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.4
    • /
    • pp.241-249
    • /
    • 1991
  • A quasi-three dimensional calculation method is presented on the basis of Wu's idea using finite element methods. In B-B flow the governing equations are cast into a single equation to overcome the restriction of the type of turbomachinery, and Kutta condition is exactly assured by introducing a combination of two kinds of stream functions. In H-S flow a dissipative force which is assumed to be opposed to the relative velocity is added to the governing equation for a consistent loss model. The entropy change along each streamline is then calculated by assuming that the dissipative force may be a force coming from laminar viscous stresses with inviscid velocity distributions. Both the flow solvers are combined to build a three-dimensional flow field through a few iterations. For an effect of the distortion of H-S flow surface the body forces are computed after each B-B flow calculation is finished. Mizuki's centrifugal impellers are tested numerically. The reliability of the numerical solution compared with experimental data is guaranteed.

  • PDF

Effects of P Addition and Homogenizing Heat Treatment on the Mechanical Properties of Centrifugal Cast Cu-Sn-Ni-P Alloy (원심주조한 Cu-Sn-Ni-Pb계 합금의 기계적 성질에 미치는 P첨가와 균질화 처리의 영향)

  • Kwon, Young-Hwan;Jea, Chang-Wooing;Yoon, Jae-Hong;Kang, Chang-Yong;Kim, Chang-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.17 no.5
    • /
    • pp.443-449
    • /
    • 1997
  • The purpose of this study is to investigate the effect of P addition and homogenizing heat treatment on the mechanical properties of Cu-Sn-Ni alloy. The addition of P was 0.025wt.%P to 0.085wt.%P and homogenizing heat-treated at 400, 500, $600^{\circ}C$ under $N_2$ gas atmosphere. Mechanical properties was investigated in this study were Rockwell hardness, tensile strength, and elongation. Tensile strength and elongation increased with P and homogenizing time. Temperature was significantly influence on mechanical properties. Hardness decreased with increasing homogenizing time and temperature, but 0.085wt.%P specimen was showed higher hardness and lower tensile strength and elongation than 0.073wt.%P specimen due to the presence of more $Cu_3P$ in matrix.

  • PDF

MECHANICAL PROPERTIES OF LASER-WELDED CAST TITANIUM AND TITANIUM ALLOY (원심 주조된 타이타늄과 타이타늄 합금의 레이저 용접 특성)

  • Yun, Mi-Kyung;Kim, Hyun-Seung;Yang, Hong-So;Vang, Mong-Sook;Park, Sang-Won;Park, Ha-Ok;Lee, Kwang-Min
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.5
    • /
    • pp.642-653
    • /
    • 2006
  • Purpose : The purpose of this study was to investigate the effect of the output energy(voltage) of laser welding on the strength and properties of joint of cast titanium(CP Gr II) and titanium alloy(Ti-6Al-4V). Material and method : Cast titanium and its alloy rods(ISO6871) were prepared and perpendicularly cut at the center of the rod. After the cut halves were fixed in a jig, and the joints welded with a laser-welding machine at several levels of output voltage of $200V{\sim}280V$. Uncut specimens served as the non-welded control specimens The pulse duration and pulse spot size employed in this study were 10ms and 1.0mm respectively. Tensile testing was conducted at a crosshead speed of 0.5mm/min. The ultimate tensile strength(MPa) was recorded, and the data (n=6) were statistically analyzed by one-way analysis of variance(ANOVA) and Scheffe's test at ${\alpha}$=0.05. The fracture surface of specimens investigated by scanning electron microscope (SEM). Vickers microhardness was measured under 500g load of 15seconds with the optimal condition of output voltage 280V. Results : The results of this study were obtained as follows, 1. When the pulse duration and spot size were fixed at 10ms and 1.0mm respectively, increasing the output energy(voltage) increased UTS values and penetration depth of laser welded to titanium and titanium alloy. 2. For the commercial titanium grade II, ultimate tensile strength(665.3MPa) of the specimens laser-welded at voltage of 280V were not statistically(p>0.05) different from the non-welded control specimens (680.2MPa). 3. For the titanium alloy(Ti-6Al-4V), ultimate tensile strength(988.3MPa) of the specimens laser-welded at voltage of 280V were statistically(p<0.05) different from the non-welded control specimens (665.0MPa). 4. The commercial titanium grade II and titanium alloy(Ti-6Al-4V) were Vickers microhardness values were increased in the fusion zone and there were no significant differences in base metal, heat-affected zone.

THE EFFECT OF CASTING MACHINE AND INVESTMENT ON THE CASTABILITY OF TITANIUM (주입선 형태가 타이타늄 합금의 주조성에 미치는 영향)

  • Kim, Sang-Tae;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Park, Ha-Ok;Lim, Hyun-Pil
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.4
    • /
    • pp.522-533
    • /
    • 2007
  • Statement of problem: Despite of the recent development of the titanium casting system methods, the casting defects such as imperfect casting and internal porosity were frequently observed. Purpose: The purposes of this study were to compare and measure the castability, microhardness, and surface reaction between Grade 2 pure titanium and Ti-6Al-4V by casting these alloys from the different sprue design conditions. Material and methods: Depending on the sprue designs and titanium alloys, 42 ready-made wax patterns were used. By analyzing the remodeling of the cast, internal porosity, microhardness, and titanium surface layer of SEM, there were several results we observed. Results: 1. The measured castability of titanium were categorized in the ascending order: individual sprue group, runner bar group, and single group. This data are based on the statistically signigicant differences. 2. The castability of titanium has not showed the statistically significant differences among the alloys. However, CP-Ti groups were superior to Ti-6Al-4V groups by showing the noticeable castability. 3. The surface layers of the castings of all groups have showed $5{\mu}m$ titanium oxide layers irrespective of sprue designs and titanium alloys. Conclusion: From the above study results, by fabricating the restorations from the centrifugal casting machine direct sprue designs revealed better castability. As we increased the number of sprues in the wax pattern, it revealed better castability. The castability of pure titanium rather than that of Ti-6Al-4V was remarkable. To fabricate the complex forms of the restorations, further researches on the efficient sprue designs and titanium alloys must be made.

Diagnosis of Carburized Degradation in Cracking Tube by Ultrasonic Wave (초음파에 의한 열분해관의 침탄열화도 진단)

  • Kim, C.G.;Kim, S.T.;Cho, K.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.5
    • /
    • pp.381-388
    • /
    • 1998
  • The ultrasonic method, which is well known as non-destructive test method, is widely used to evaluate the material damage caused by degradation practically. However, this method is just used for measuring the crack size and the thickness loss of tube. The purpose of this study is to investigate the applicability of the ultrasonic technique for the evaluation of carburized material and to suggest the correlations between the ultrasonic characteristics and carburized degradation. The miniaturized specimens($40{\times}20{\times}6.3mm$) are adopted from the HK-40 (25Cr-20Ni-0.4C) centrifugal cast tube after carburization treatment. Carburization was carried at $1200^{\circ}C$ by the pack method. The results of ultrasonic test present that the longitudinal wave velocity increased with the increase of carburized depth. The correlation between the longitudinal wave velocity and carburization was changed with the density and Young's modulus. Therefore, the average velocity in the materials carburized for 336 hours and the unused one were 5,840 m/s and 5,755 m/s at 5 MHz, respectively. With the obtained results from this study, it can be recognized that the technique using the ultrasonic velocity property is very useful method to evaluate the degree of carburized material non-destructively.

  • PDF

Elemental alteration of the surface of dental casting alloys induced by electro discharge machining (치과용 주조 합금의 방전가공에 따른 표면 성분 변화)

  • Jang, Yong-Chul;Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.31 no.1
    • /
    • pp.55-61
    • /
    • 2009
  • Passive fitting of meso-structure and super-structures is a predominant requirement for the longevity and clinical success of osseointegrated dental implants. However, precision and passive fitting has been unpredictable with conventional methods of casting as well as for corrective techniques. Alternative to conventional techniques, electro discharge machining(EDM) is an advanced method introduced to dental technology to improve the passive fitting of implant prosthesis. In this technique material is removed by melting and vaporization in electric sparks. Regarding the efficacy of EDM, the application of this technique induces severe surface morphological and elemental alterations due to the high temperatures developed during machining, which vary between $10,000{\sim}20,000^{\circ}C$. The aim of this study was to investigate the morphological and elemental alterations induced by EDM process of casting dental gold alloy and non-precious alloy used for the production of implant-supported prosthesis. A conventional clinical dental casting alloys were used for experimental specimens patterns, which were divided in three groups, high fineness gold alloy(Au 75%, HG group), low fineness gold alloy(Au 55%, LG group) and nonprecious metal alloy(Ni-Cr, NP group). The UCLA type plastic abutment patterns were invested with conventional investment material and were cast in a centrifugal casting machine. Castings were sandblasted with $50{\mu}m\;Al_2O_3$. One casting specimen of each group was polished by conventional finishing(HGCON, LGCON, NPCON) and one specimen of each group was subjected to EDM in a system using Cu electrodes, kerosene as dielectric fluid in 10 min for gold alloy and 20 min for Ni-Cr alloy(HGEDM. LGEDM, NOEDM). The surface morphology of all specimens was studied under an energy dispersive X-ray spectrometer (EDS). The quantitative results from EDS analysis are presented on the HGEDM and LGEDM specimens a significant increase in C and Cu concentrations was found after EDM finishing. The different result was documented for C on the NPEDM with a significant uptake of O after EDM finishing, whereas Al, Si showed a significant decrease in their concentrations. EDS analysis showed a serious uptake of C and Cu after the EDM procedure in the alloys studied. The C uptake after the EDM process is a common finding and it is attributed to the decomposition of the dielectric fluid in the plasma column, probably due to the development of extremely high temperatures. The Cu uptake is readily explained from the decomposition of Cu electrodes, something which is also a common finding after the EDM procedure. However, all the aforementioned mechanisms require further research. The clinical implication of these findings is related with the biological and corrosion resistance of surfaces prepared by the EDM process.

  • PDF

High Strength Nanostructured Metastable Alloys

  • Eckert, Jurgen;Bartusch, Birgit;Schurack, Frank;He, Guo;Schultz, Ludwig
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.394-408
    • /
    • 2002
  • Nanostructured high strength metastable Al-, Mg- and Ti-based alloys containing different amorphous, quasicrystalline and nanocrystalline phases are synthesized by non-equilibrium processing techniques. Such alloys can be prepared by quenching from the melt or by powder metallurgy techniques. This paper focuses on one hand on mechanically alloyed and ball milled powders containing different volume fractions of amorphous or nano-(quasi)crystalline phases, consolidated bulk specimens and, on the other hand. on cast specimens containing different constituent phases with different length-scale. As one example. $Mg_{55}Y_{15}Cu_{30}$- based metallic glass matrix composites are produced by mechanical alloying of elemental powder mixtures containing up to 30 vol.% $Y_2O_3$ particles. The comparison with the particle-free metallic glass reveals that the nanosized second phase oxide particles do not significantly affect the glass-forming ability upon mechanical alloying despite some limited particle dissolution. A supercooled liquid region with an extension of about 50 K can be maintained in the presence of the oxides. The distinct viscosity decrease in the supercooled liquid regime allows to consolidate the powders into bulk samples by uniaxial hot pressing. The $Y_2O_3$ additions increase the mechanical strength of the composites compared to the $Mg_{55}Y_{15}Cu_{30}$ metallic glass. The second example deals with Al-Mn-Ce and Al-Cu-Fe composites with quasicrystalline particles as reinforcements, which are prepared by quenching from the melt and by powder metallurgy. $Al_{98-x}Mn_xCe_2$ (x =5,6,7) melt-spun ribbons containing a major quasicrystalline phase coexisting with an Al-matrix on a nanometer scale are pulverized by ball milling. The powders are consolidated by hot extrusion. Grain growth during consolidation causes the formation of a micrometer-scale microstructure. Mechanical alloying of $Al_{63}Cu_{25}Fe_{12}$ leads to single-phase quasicrystalline powders. which are blended with different volume fractions of pure Al-powder and hot extruded forming $Al_{100-x}$$(Al_{0.63}Cu_{0.25}Fe_{0.12})_x$ (x = 40,50,60,80) micrometer-scale composites. Compression test data reveal a high yield strength of ${\sigma}_y{\geq}$700 MPa and a ductility of ${\varepsilon}_{pl}{\geq}$5% for than the Al-Mn-Ce bulk samples. The strength level of the Al-Cu-Fe alloys is ${\sigma}_y{\leq}$550 MPa significantly lower. By the addition of different amounts of aluminum, the mechanical properties can be tuned to a wide range. Finally, a bulk metallic glass-forming Ti-Cu-Ni-Sn alloy with in situ formed composite microstructure prepared by both centrifugal and injection casting presents more than 6% plastic strain under compressive stress at room temperature. The in situ formed composite contains dendritic hcp Ti solid solution precipitates and a few $Ti_3Sn,\;{\beta}$-(Cu, Sn) grains dispersed in a glassy matrix. The composite micro- structure can avoid the development of the highly localized shear bands typical for the room temperature defor-mation of monolithic glasses. Instead, widely developed shear bands with evident protuberance are observed. resulting in significant yielding and homogeneous plastic deformation over the entire sample.

CERAMIC INLAY RESTORATIONS OF POSTERIOR TEETH

  • Jin, Myung-Uk;Park, Jeong-Won;Kim, Sung-Kyo
    • Proceedings of the KACD Conference
    • /
    • 2001.05a
    • /
    • pp.235-237
    • /
    • 2001
  • ;Dentistry has benefited from tremendous advances in technology with the introduction of new techniques and materials, and patients are aware that esthetic approaches in dentistry can change one's appearance. Increasingly. tooth-colored restorative materials have been used for restoration of posterior teeth. Tooth-colored restoration for posterior teeth can be divided into three categories: 1) the direct techniques that can be made in a single appointment and are an intraoral procedure utilizing composites: 2) the semidirect techniques that require both an intraoral and an extraoral procedure and are luted chairside utilizing composites: and 3) the indirect techniques that require several appointments and the expertise of a dental technician working with either composites or ceramics. But, resin restoration has inherent drawbacks of microleakage. polymerization shrinkage, thermal cycling problems. and wear in stress-bearing areas. On the other hand, Ceramic restorations have many advantages over resin restorations. Ceramic inlays are reported to have less leakage than resin restoration and to fit better. although marginal fidelity depends on technique and is laboratory dependent. Adhesion of luting resin is more reliable and durable to etched ceramic material than to treated resin composite. In view of color matching, periodontal health. resistance to abrasion, ceramic restoration is superior to resin restorationl. Materials which have been used for the fabrication of ceramic restorations are various. Conventional powder slurry ceramics are also available. Castable ceramics are produced by centrifugal casting of heat-treated glass ceramics. and machinable ceramics are feldspathic porcelains or cast glass ceramics which are milled using a CAD/CAM apparatus to produce inlays (for example, Cered. They may also be copy milled using the Celay apparatus. Pressable ceramics are produced from feldspathic porcelain which is supplied in ingot form and heated and moulded under pressure to produce a restoration. Infiltrated ceramics are another class of material which are available for use as ceramic inlays. An example is $In-Ceram^{\circledR}$(Vident. California, USA) which consists of a porous aluminum oxide or spinell core infiltrated with glass and subsequently veneered with feldspathic porcelain. In the 1980s. the development of compatible refractory materials made fabrication easier. and the development of adhesive resin cements greatly improved clinical success rates. This case report presents esthetic ceramic inlays for posterior teeth.teeth.

  • PDF