• Title/Summary/Keyword: Central Processing Unit

Search Result 132, Processing Time 0.027 seconds

내장형 GPU 환경에서 CPU-GPU 간의 공유 캐시에서의 캐시 분할 방식의 필요성 (The Need of Cache Partitioning on Shared Cache of Integrated Graphics Processor between CPU and GPU)

  • 성한울;엄현상;염헌영
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제20권9호
    • /
    • pp.507-512
    • /
    • 2014
  • 최근 전력의 한계 때문에 많은 트랜지스터를 모두 이용할 수 없는 '다크실리콘' 문제가 발생했다. 이 문제를 효율적으로 해결하기 위하여 CPU(Central processing unit)와 GPU(Graphic processing unit)를 함께 사용하여 분산처리하기 시작했다. 최근에는 CPU(Central processing unit)와 GPU(Graphic processing unit)가 메모리와 Last Level Cache를 공유하는 내장형 GPU 프로세서(Integrated graphic processing unit processor)가 등장했다. 하지만 CPU 프로세스와 GPU 프로세스가 LLC(Last level cache)로 접근하기 위한 어떠한 규칙이 없기 때문에, 동시에 CPU 프로세스와 GPU 프로세스 수행될 때 LLC(Last level cache)를 차지하기 위한 경쟁이 일어나 성능 저하가 발생한다. 본 논문에서는 캐시 접근 빈도가 큰 여러 개의 프로세스들이 수행됨에 따라 캐시 오염이 발생한 상황에서 GPU 프로세스의 성능 보장을 위하여 GPU 프로세스만을 위한 고정된 Last Level Cache 공간을 주는 캐시 분할방식이 필요함을 증명하고 캐시를 분할하기 위한 페이지 컬러링 기법을 소개하고 디자인한다.

생체신호 측정 및 종합관리 시스템 (SiMACS) (Biological Signal Measurement, Archiving, and Communication System (SiMACS))

  • 우응제;박승훈
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1994년도 춘계학술대회
    • /
    • pp.49-52
    • /
    • 1994
  • We have developed a biological signal measurement, archiving, and communication system (SiMACS). The front end of the system is the intelligent data processing unit (IDPU) which includes ECG, EEG, EMG, blood pressure, respiration, temperature measurement modules, module control and data acquisition unit, real-time display and signal processing unit. IDPUS are connected to central data base unit through LAN(Ethernet). Workstations which receive signals from central DB and provide various signal analysis tools are also connected to the network. The developed PC-based SiMACS is described.

  • PDF

GPU 가속 운동파 강우유출모형의 적용 연구 (A study on application of GPU-accelerated kinematic wave rainfall-runoff model)

  • 김보람;윤관선;김형준;윤광석
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.323-323
    • /
    • 2020
  • 그래픽 처리 장치(Graphic Processing Unit: GPU)는 그래픽 처리 작업에 특화된 다수의 산술논리 장치(Arithmetic Logic Unit: ALU)로 구성되어 있어서 중앙 처리 장치(Central Processing Unit: CPU)보다 한 번에 더 많은 연산 수행이 가능하다. 본 연구는 GPU 가속 운동파모형을 실제 유역에 적용하여, GPU 가속 운동파 강우유출모형 결과에 대한 정확성과 연산 소요 시간에 대한 효율성을 확인하였다. GPU 가속 운동파모형은 분포형 강우유출모형의 수치모의 연산시간을 단축시키기 위해 CUDA 포트란을 이용하여 개발되었다. 분포형모형의 지배방정식은 운동파모형과 Green-Ampt모형으로 구성되었고, 운동파모형은 유한체적법을 이용하여 이산화 하였다. GPU 가속 운동파모형을 이용하여 금강의 미호천 유역에서 발생하는 강우유출현상을 모의 하였고, 동일한 유한체적법을 이용한 CPU(Central Processing Unit) 기반의 강우유출모형과 비교하였다. 그 결과 GPU 가속모형의 결과는 미호천 유역 하류단에서 관측한 결과와 유사한 결과를 나타냈다. 또한, 연산소요시간은 CPU 기반의 강우유출모형의 연산소요시간보다 단축되었으며, 본 연구에 사용된 장비를 기준으로 최대 100배 정도 단축되었다.

  • PDF

정보검색(情報檢索)시스템의 평가(評価)에 관한 연구(硏究) (A study on evaluation of information retrieval system)

  • 박인웅
    • 한국비블리아학회지
    • /
    • 제5권1호
    • /
    • pp.85-105
    • /
    • 1981
  • Information is an essential factor leading the rapid progress which is one of the distinguished characteristics in modem society. As more information is required and as more is supplied by individuals, governmental units, businesses, and educational institutions, the greater will be the requirement for efficient methods of communication. One possibility for improving the information dissemination process is to use computers. The capabilities of such machine are beginning to be used in the process of Information storage, retrieval and dissemination. An important problems, that must be carefully examined is whether one technique for information retrieval is better for worse than another. This paper examines problem of how to evaluate an information retrieval system. One specific approach is a cost accounting model for use in studying how to minimize the cost of operating a mechanized retrieval system. Through the use of cost analysis, the model provides a method for comparative evaluation between systems. The general cost accounting model of the literature retrieval system being designed by this study are given below. 1. The total cost accounting model of the literature retrieval system. The total cost of the literature retrieval system = (the cost per unit of user time X the amount of user time) + ( the cost per unit of system time X the amount of system time) 2. System cost accounting model system cost = (the pre-search system cost per unit of time X time) + (the search system cost per unit of time X time) + (the post search system cost per unit of time X time) 1) Pre-search system cost per unit of time = cost of channel per unit time + cost of central processing unit per unit time + cost of storage per unit time 2) Search system cost per unit of time = comparison cost + document representation cost. 3) Post-search system cost per unit of time. = cost of channel per unit time + cost of central processing unit per unit time + cost of storage per unit time 3. User cost accounting model Total user cost = [pre-search user cost per unit of time X (time + additional time) ] + [search user cost per unit of time X (time + additional time) ] + [post-search user cost per unit of time X (time + additional time) ].

  • PDF

상태감시용 센서를 내장한 배전용 변압기 및 데이터 처리장치 개발 (Development of Distribution Transformer with Condition Monitoring Sensors and Data Processing Unit)

  • 정준홍;유남철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.201_202
    • /
    • 2009
  • This paper presents a design methodology of a distribution transformer with condition monitoring sensors and its data processing unit. The proposed distribution transformer includes various type of condition monitoring sensors such as load current/voltage, temperature and heat aging of insulating oil. The data processing unit is installed at the distribution transformer site. It integrates sensed data and transmits these to a central server system. The proposed distribution transformer and its data processing unit will help an on-line condition monitoring system for distribution transformers.

  • PDF

실시간 3차원 레이저 레이더 영상 생성을 위한 CUDA 기반 병렬처리 소프트웨어 설계 (The Design of Parallel Processing S/W Using CUDA for Realtime 3D Laser Ladar Imaging System)

  • 조용일;하중림;양지현;김재협
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권1호
    • /
    • pp.1-10
    • /
    • 2013
  • 본 논문은3차원레이저레이더(LADAR, Laser Ladar) 영상 생성 시스템 개발을 수행함에 있어, 요구되는 실시간 처리를 구현하기 위해 CPU(Central Processing Unit) 및 GPU(Graphic Processing Unit)의 병렬처리 구조를 설계하는 CUDA(Common Unified Device Architecture) 기반 소프트웨어(SW, Software) 구현 기법에 대하여 설명한다. LADAR 시스템은 레이저 거리정보를 기반으로 3차원 영상을 생성하는 복잡도 높은 시스템으로써, 각 단계별로 많은 량의 처리 자원이 필요하다. 따라서, 한정된 시스템 자원 내에서 이를 실시간으로 처리하기 위해서는 반드시 병렬처리 구조를 설계 및 적용해야 한다. 본 논문에서는, 처리 알고리즘의 단계적 분석을 통해 분할 가능한 작업에 대하여 CUDA GPU로 할당 및 처리를 수행함으로써, 시스템에서 요구하는 실시간 처리를 달성하였으며, 처리 속도 분석을 통해 최대 46%의 처리 속도 향상을 확인할 수 있었다.

CUDA의 메모리 복사로 인한 성능 저하 연구 (A Study on a Declines in Performance by Memory Copy in CUDA)

  • 강지훈;이대원;강인성;유헌창
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 추계학술발표대회
    • /
    • pp.135-138
    • /
    • 2013
  • GPGPU(General Purpose Graphics Processing Unit) 병렬처리 시스템인 CUDA(Compute Unified Device Architecture)는 컴퓨터에서의 고속 연산 처리를 위해 많이 사용되어왔다. CUDA에서 연산 처리를 하기 위해서는 CUDA의 특성을 이해해야 한다. CUDA는 CPU(Central Processing Unit)가 처리하는 Host 영역과 GPU(Graphics Processing Unit)가 처리하는 영역인 Device 영역이 존재하며, 이 두 영역간의 데이터 복사를 통해 연산 처리를 진행한다. 이런 구조적인 특성상 메인 메모리에서 GPU 메모리로 입력 데이터를 전달해야 GPU를 이용해 연산을 처리할 수 있는 구조를 가지고 있다. 하지만 이러한 처리 구조로 인해 연산 시간과 별도로 메인 메모리와 GPU 메모리간의 데이터 복사시간이 존재하며, 추가적으로 발생하는 메모리 복사 시간으로 인해 오버헤드가 발생하게 된다. 본 논문에서는 실험을 통해 메모리 복사 시간, 연산의 반복 횟수 그리고 연산의 복잡성이 전체 성능에 어떤 영향을 미치는지 논하고자 한다.

Analysis of Implementing Mobile Heterogeneous Computing for Image Sequence Processing

  • BAEK, Aram;LEE, Kangwoon;KIM, Jae-Gon;CHOI, Haechul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권10호
    • /
    • pp.4948-4967
    • /
    • 2017
  • On mobile devices, image sequences are widely used for multimedia applications such as computer vision, video enhancement, and augmented reality. However, the real-time processing of mobile devices is still a challenge because of constraints and demands for higher resolution images. Recently, heterogeneous computing methods that utilize both a central processing unit (CPU) and a graphics processing unit (GPU) have been researched to accelerate the image sequence processing. This paper deals with various optimizing techniques such as parallel processing by the CPU and GPU, distributed processing on the CPU, frame buffer object, and double buffering for parallel and/or distributed tasks. Using the optimizing techniques both individually and combined, several heterogeneous computing structures were implemented and their effectiveness were analyzed. The experimental results show that the heterogeneous computing facilitates executions up to 3.5 times faster than CPU-only processing.

CUDA fortran을 이용한 GPU 가속 운동파모형 개발 (Development of GPU-accelerated kinematic wave model using CUDA fortran)

  • 김보람;박선량;김대홍
    • 한국수자원학회논문집
    • /
    • 제52권11호
    • /
    • pp.887-894
    • /
    • 2019
  • 분포형 강우유출모형의 수치모의 연산시간을 단축시키기 위해 GPU(Graphic Processing Unit)를 이용한 가속 운동파모형을 개발하고 정확성과 연산속도에 대한 성능을 검토하였다. 분포형모형의 지배방정식은 운동파모형과 Green-Ampt모형으로 구성되었고, 운동파모형은 유한체적법을 이용하여 이산화 하였다. GPU 가속 운동파모형 개발을 위해 CUDA fortran을 이용하였다. 개발된 모형을 이용하여 이상적인 유역에서 발생하는 강우유출현상을 모의 하였고, 다른 모형 및 실험결과와의 비교를 통하여 개발된 GPU 가속 운동파모형이 비교적 정확하게 유출량을 계산할 수 있음을 확인하였다. 동일한 유한체적법을 이용한 CPU(Central Processing Unit) 기반의 강우유출모형과 비교할 경우, GPU 가속모형의 연산시간 단축비율은 격자의 수가 증가할수록 높아졌으며, 본 연구에 사용된 장비를 기준으로 최대 450배 정도 단축됨을 확인하였다.

3D Holographic Image Recognition by Using Graphic Processing Unit

  • Lee, Jeong-A;Moon, In-Kyu;Liu, Hailing;Yi, Faliu
    • Journal of the Optical Society of Korea
    • /
    • 제15권3호
    • /
    • pp.264-271
    • /
    • 2011
  • In this paper we examine and compare the computational speeds of three-dimensional (3D) object recognition by use of digital holography based on central unit processing (CPU) and graphic processing unit (GPU) computing. The holographic fringe pattern of a 3D object is obtained using an in-line interferometry setup. The Fourier matched filters are applied to the complex image reconstructed from the holographic fringe pattern using a GPU chip for real-time 3D object recognition. It is shown that the computational speed of the 3D object recognition using GPU computing is significantly faster than that of the CPU computing. To the best of our knowledge, this is the first report on comparisons of the calculation time of the 3D object recognition based on the digital holography with CPU vs GPU computing.