• Title/Summary/Keyword: Center of gravity measurement

Search Result 48, Processing Time 0.031 seconds

Field Measurement of the Center of Gravity and the Moment of Inertia of Railway Vehicles Using Vibration (진동을 이용한 철도차량의 무게중심과 관성모멘트 현장 측정)

  • Song, Ki-Seok;Choi, Yeon-Sun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.10
    • /
    • pp.878-884
    • /
    • 2013
  • The center of gravity and the moment of inertia of railway vehicles are important parameters for running safety and stability in railway vehicle design. However, the exact measurement of those is difficult in manufacturing field. The weight measurement of a railway vehicle beneath the wheel using a weight scale is off by a large amount. This paper suggests a measurement method for the center of gravity and the moment of inertia of railway vehicles using vibration. For the measurement a railway vehicle is suspended using four wires. Direct measurement of the tension of the wires and the period of swinging motion of the suspended railway vehicle with calculations give the exact location of the center of gravity and the moment of inertia in x, y, and z directions, respectively. This implementation was demonstrated using an experimental device and verified numerically.

A Study on the Analysis of Measurement Errors of Specific Gravity Meter (기준 밀도계의 측정 오차 분석에 관한 연구)

  • Lee, Kang-Jin;Her, Jae-Young;Ha, Young-Cheol;An, Seung-Hee;Lee, Seung-Jun;Lee, Cheol-Gu
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.676-680
    • /
    • 2002
  • The specific gravity meter is the instrument used to measure the density of fluids under the reference conditions and it can be widely used in industrial areas, especially in massive flow rate natural gas industry. This study has been carried out in an attempt to improve measurement accuracy of natural gas flow rate calculation, providing the adequate installation and proper operation conditions of specific gravity meter. The test results are 1) the density measurement errors in case of using methane and standard gas as calibration gases are smaller than using methane and nitrogen gas, 2) the periodical calibration to maintain accurate density measurements is essential, and 3) the specific gravity meter is sensitive to changes of environmental conditions, especially environmental temperature surrounding the specific gravity meter.

A Experimental Study on the Measurement and Estimation of Vehicle Center of Gravity (차량무게중심의 측정 및 추정에 관한 연구)

  • Lee, Myung-Su;Kim, Sang-Sup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.91-99
    • /
    • 2010
  • The center of gravity on vehicle is a fundamentally important point for assessing and measuring the characteristics of vehicle dynamics. Especially, the center of gravity height on vehicles is the closest factor with respect to rollover accidents in a social issue nowadays. In this paper, the center of gravity height in conjunction with vehicle parameters of vehicle weight, driving axle and roof height after measured by vehicle weight and loading location by means of VCGM developed by KATRI with good performance that the accuracy was less than 0.6% and repeatability 0.3% for vehicles being used in the whole world was observed. As a result of study, the location of center of gravity height on vehicle was able to be estimated with only roof height on vehicle.

Measurement of Gravity Center for Rotor Blades by Compensation of Machining Error in Jig (지그의 가공오차 보정에 의한 블레이드 무게 중심 측정)

  • Kong, Jae-Hyun;Kim, Ki-Sung;Ye, Sang-Don;Chun, See-Young;Hur, Kwan-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.12
    • /
    • pp.41-47
    • /
    • 2010
  • There are many unbalanced models such as helicopter's rotor blades, small-sized precision motor in industrial applications. In the real products, their gravity center usually does not accord with the desired gravity center. If the deviation is large between them, it can be a major cause of vibration and noise as the part of model rotate. Therefore the gravity center in the rotational parts should be controlled properly because of static and dynamic balancing of the parts. In the research, the rotor blade of unmanned helicopter has been selected to obtain the high quality of balancing. In order to achieve the purpose, measuring system has been developed. In the system applied principle is three point weighting method, which is one of the Multiple-point Weighting Method. It has circle fitting for compensation of machining error, after measuring the values. From this study, the results showed that the proposed measurement procedure gives reliable and precise gravity center.

A Development of Unbalanced Box Stacking System with High Stability using the Center of Gravity Measurement (무게중심 측정을 이용한 불평형 상자의 고안정 적재 시스템 개발)

  • Seong-Woo Bae;Dae-Gyu Han;Jae-Ho Ryu;Hyeon-hui Lee;Chae-Hun An
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.1
    • /
    • pp.229-237
    • /
    • 2024
  • The logistics industry is converging with digital technology and growing into various logistics automation systems. However, inspection and loading/unloading, which are mainly performed in logistics work, depend on human resources, and the workforce is shrinking due to the decline in the productive population due to the low birth rate and aging. Although much research is being conducted on the development of automated logistics systems to solve these problems, there is a lack of research and development on load stacking stability, which has the potential to cause significant accidents. In this study, loading boxes with various sizes and positions of the center of gravity were set up, and a method for stacking that with high stability is presented. The size of the loading box is measured using a depth camera. The loading box's weight and center of gravity are measured and estimated by a developed device with four loadcells. The measurement error is measured through various repeated experiments and is corrected using the least squares method. The robot arm performs load stacking by determining the target position so that the centers of gravity of the loading boxes with unbalanced masses with a random sequence are transported in alignment. All processes were automated, and the results were verified by experimentally confirming load stacking stability.

An analysis on the Earth geoid surface variation effect for use of the tilt sensor in celestial navigation system

  • Suk, Byong-Suk;Yoon, Jae-Cheol;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1867-1870
    • /
    • 2005
  • The celestial navigation is one of alternatives to GPS system and can be used as a backup of GPS. In the celestial navigation system using more than two star trackers, the vehicle's ground position can be solved based on the star trackers' attitude information if the vehicle's local vertical or horizontal angle is given. In order to determine accurate ground position of flight vehicle, the high accurate local vertical angle measurement is one of the most important factors for navigation performance. In this paper, the Earth geophysical deflection was analyzed in the assumption of using the modern electrolyte tilt sensor as a local vertical sensor for celestial navigation system. According to the tilt sensor principle, the sensor measures the tilt angle from gravity direction which depends on the Earth geoid surface at a given position. In order to determine the local vertical angle from tilt sensor measurement, the relationship between the direction of gravity and the direction of the Earth center should be analyzed. Using a precision orbit determination software which includes the JGM-3 Earth geoid model, the direction of the Earth center and the direction of gravity are extracted and analyzed. Appling vector inner product and cross product to the both extracted vectors, the magnitude and phase of deflection angle between the direction of gravity and the direction of the Earth center are achieved successfully. And the result shows that the angle differences vary as a function of latitude and altitude. The maximum 0.094$^{circ}$angle difference occurs at 45$^{circ}$latitude in case of 1000 Km altitude condition.

  • PDF

Precise Measurement of Center of Gravity Using 3-Point Weighing Method (3점 측정방식을 사용한 무게중심의 정밀 측정)

  • Yoo I.J.;Lee S.P.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.283-284
    • /
    • 2006
  • In this paper 3-point weighing method is adopted to measure the unbalance moment of small-sized precision spinning elements using electronic scales with 0.1 mgf resolution. Firstly methods to eliminate the fixture error and to reduce the effects of frictional force that is known as side effect, are proposed. A measuring system is developed and various experiments are performed to verify the proposed approach. The measured and calculated values are analysed in statistical methods, and this provides the errors of the measuring system. The results show that the proposed theory and test procedures gives reliable unbalance moments and gravitational centers.

  • PDF

Gravity Survey over the Bupyeong Silver Deposits (부평 은광상 일대의 중력탐사)

  • Kwon, Byung-Doo;Lee, Heui-Soon
    • Economic and Environmental Geology
    • /
    • v.24 no.1
    • /
    • pp.63-69
    • /
    • 1991
  • Gravity study was carried out to investigate the structure and total mass of the Bupyeong silver deposits closely related to formation of the Bupyeong caldera. Survey region covers $3.3{\times}6.6km^2$ over silver deposits and is comprised of 334 gravity measurement stations. An apparent regional gravity trend parallel to the west coast line is mainly attributed to isostasy. A least square isostasy model was used for the regional correction. A Fortan subroutine was coded to calculate 3-dimensional subsurface model. The calculated gravity values from the 3-dimensional model of the caldera with silver deposits agree with observed anomalies relatively well. Gravity anomaly due to Bupyeong silver deposits reaches to +3.5 mgal from the background value and anomaly due to the caldera reaches to -4 mgal. But the maximum negative anomaly of the caldera would be much greater at its center. The total mass of silver deposits calculated from the subsurface model is $4.19{\times}10^9$ tons. Although the economic part of silver deposits depends on the grade of orebody, we expect that there are still large amount of silver reserves in Bupyeong area.

  • PDF

Observed Pattern of Diel Variation in Specific Gravity of Pacific Mackerel Eggs and Larvae

  • Lee, Hwa Hyun;Kang, Sukyung;Jung, Kyung-Mi;Jung, Sukgeun;Sohn, Dongwha;Kim, Suam
    • Ocean and Polar Research
    • /
    • v.39 no.4
    • /
    • pp.257-267
    • /
    • 2017
  • Although Pacific mackerel (Scomber japonicus) is an important commercial species in Korea, its recruitment mechanism remains largely unknown. Diel vertical positioning of larvae in the water column, which is affected by their specific gravity and the surrounding water density, may help to provide an understanding on recruitment success through predator avoidance and prey availability. The specific gravity measurement on Pacific mackerel eggs and larvae would seem to be essential information necessary to learn about the transport process from spawning to nursery grounds, and consequently the recruitment success. Eggs were artificially fertilized, and larvae were fed with rotifer when their mouths opened 3-4 days after hatching. We conducted the experiment using a density gradient water column to measure the ontogenetic changes in specific gravity from fertilization to 10 days after hatching. Egg specific gravity was stable during most of the embryonic period, but a sudden increase to $1.0249g\;cm^{-3}$ happened just before hatching. However, the specific gravity of newly hatched larvae was much lighter ($1.0195g\;cm^{-3}$), and specific gravity tended to increase continuously after hatching. Comparison of specific gravity with seawater density reveals that eggs and newly hatched larvae can float in the surface layer of the ocean. For the later period of the experiment, the specific gravity showed a cyclic diel pattern: the highest in the evening while the lowest at dawn. The fullness of larval stomach may be responsible for the observed differences in specific gravity, because stomach fullness was lower (40-60%) at midnight, and higher (80-85%) in evening. The diel pattern of specific gravity might provide clues regarding how larvae match the diel vertical migration of prey organisms.