• Title/Summary/Keyword: Cement-paste

Search Result 754, Processing Time 0.026 seconds

A Study on Corrosion Resistance of CA2-Mixed Paste (CA2 혼입 페이스트의 부식저항성에 관한 연구)

  • Kim, Jae-Don;Jang, Il-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.2_2
    • /
    • pp.289-297
    • /
    • 2022
  • Deterioration in durability of structures due to the steel corrosion is difficult to determine whether or not corrosion is initiated and how much propagated, and moreover, repair and maintenance are not easy to deal with. Therefore, preventive treatments can be the best option to avoid the deterioration. Various methods for preventing corrosion of steel, such as electrochemical treatments, anti-corrosion agents and steel surface coatings, are being developed, but economic and environmental aspects make it difficult to apply them to in-situ field. Thus, the purpose of this study was to improve corrosion resistance by using CA-based clinker that are relatively simple and expected to be economically profitable Existing CA-based clinkers had problems such as flash setting and low strength development during the initial hydration process, but in order to solve this problem, CA clinker with low initial reactivity were used as binder in this study. The cement paste used in the experiments was replaced with CA2 clinker for 0%, 10%, 20%, and 30% in OPC. And the mixture used in the chloride binding test for the extraction of water-soluble chloride was intermixed with Cl- 0.5%, 1%, 2%, and 3% by weight of binder content. To evaluate characteristic of hydration heat evolution, calorimetry analysis was performed and simultaneously chloride binding capacity and acid neutralization capacity were carried out. The identification of hydration products with curing ages was verified by X-ray diffraction analysis. The free chloride extraction test showed that the chlorine ion holding ability improved in order OC 10 > OC 30 > OC 20 > OC 0 and the pH drop resistance test showed that the resistance capability in pH 12 was OC 0 > OA 10 > OA 20 > OA 30. The XRD analyses showed that AFm phase, which can affect the ability to hold chlorine ions, tended to increase when CA2 was mixed, and that in pH12 the content of calcium hydroxide (Ca(OH)2), which indicates pH-low resistance, decreased as CA2 was mixed

Ettringite/Thaumasite Formation, Stability and Their Effect on Deterioration of Concrete (에트린자이트/사우마사이트의 형성 및 안정도와 콘크리트 성능저하에 미치는 영향)

  • 이효민;황진연
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.75-90
    • /
    • 2003
  • Ettringite and thaumasite were observed in some concrete. The morphology and occurrence of these minerals were closely examined by performing SEM/EDAX analyses. We also experimentally induced the concrete deterioration using $Na_2SO_4$ solution with application of various environmental conditions. The stability of these minerals and deterioration characteristics under applied experimental conditions were determined. Abundant ettringite formed by“through solution reaction”occurred in many open spaces, and some microscopic ettringite formed by "tophochemical replacement" of calcium aluminate also occurred in cement paste. Severe cracking of cement paste causing premature deterioration was often associated with ettringite location. Under specific condition, ettringite was transformed to thaumasite, tricthloroaluminate, or decomposed. Thaumasite occurred with association of ettrinsite in concrete containing carbonate aggregate being subject to dedolomitization or in some concrete being subject to carbonation. Thaumasite appears to be formed under the similar condition to the general ettringite forming condition, but it formed solid solution with ettringite by substituting pre-existing ettringite. Ettringite can also be transformed to trichloroaluminate in the presence of abundant chlorides, but trichloroaluminate changed back to ettringite in late sulfate attack. It is considered that the substitution reaction direction solely depend on the concentration of chloride and sulfate ion.

Pore Structure and Physical Properties of Heterogeneous Bonding Materials of Recycled Aggregate according to Carbonation Reforming (순환 골재 부착 이질재의 탄산화 개질에 따른 공극구조 및 물리적 특성)

  • Shin, Jin-Hak;Kim, Han-Sic;Chung, Lan;Ha, Jung-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.341-348
    • /
    • 2016
  • At present, about 40 million tons of concrete is dismantled each year, which accounts for the largest portion of the total amount of construction waste with 60.8%. It is known about 97.5% of it is recycled. However, most of the usage of waste concrete is limited to lower value-added business areas, and considering the increasing amount of waste concrete generated due to the deterioration of structures, the need for converting waste concrete to structural concrete is urgent. Therefore, this study aims at estimating the period for the optimum carbonation reforming to improve the quality of recycled aggregate, by making use of the method of accelerated carbonation reforming of the bonding heterogeneous (cement paste and mortar) for the purpose of converting recycled aggregate to structural concrete. Based on the period appropriate for the heterogeneous thickness and each bonding thickness of recycled aggregate which was drawn from previous studies, the changes in the characteristics and physical properties of pore structure according to progress of accelerated carbonation were analyzed. The result shows that with the progress of carbonation, the pore volume and the percentage of water absorption of the bonding heterogeneous decreased and the density increased, which indicates improvement of the product quality. But after certain age, the tendency was reversed and the product quality deteriorated. Synthesizing the results of previous studies and those of the present study, this study proposed 4 days and 14 days respectively for the period for the optimum carbonation reforming of recycled fine aggregate and recycled coarse aggregate.

Evaluation on Reactivity of By-Product Pozzolanic Materials Using Electrical Conductivity Measurement (전기전도도 시험방법을 활용한 산업부산물 포졸란재료의 반응성 평가)

  • Choi, Ik-Je;Kim, Ji-Hyun;Lee, Soo-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.5
    • /
    • pp.421-428
    • /
    • 2016
  • In this work, pozzolanic activities of various waste materials were compared with those of well-known by-product pozzolanic materials. Undensified and densified silica fume, ASTM class F and class C fly ash, and metakaolin were chosen as well-known pozzolanic materials, and bentonite powder, ceramic powder obtained from wash basin, and waste glass wool, which can possibly possess pozzolanic property, were chosen for comparison. Drop in electrical conductivity at $40^{\circ}C$ saturated lime solution was measured for each materials. The amount of Ca(OH)2 decomposed from cement paste at $450{\sim}500^{\circ}C$ was also measured to evaluate pozzolanic activity. The 28 day compressive strength were used to observe the mechanical property enhanced by incorporation of various waste materials. According to the experimental results, using "difference between maximum conductivity value and conductivity value at 4 hour" was found to be a reasonable approach to determine pozzolanic activity of a material. Pozzolanic activity measured using electrical conductivity correlates very well with that measured using the amount of Ca(OH)2 remained in the cement paste. Relatively good agreement was also found with electrical conductivity and 28 day compressive strength. It was found that electrical conductivity measurement can be used to evaluate pozzolanic activity of unknown materials.

Evaluation of the Shaft Resistance of Drilled-in Steel Tubular Pile in Rock Depending on the Proportion of Annulus Grouting Material (주면고정액 배합비에 따른 암반매입 강관말뚝의 주면지지력 평가)

  • Moon, Kyoungtae;Park, Sangyeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.51-61
    • /
    • 2018
  • Foundation of tower structures such as wind turbine, pylon, and chimney have to resist considerably large overturning moment due to long distance from foundations to load point and large horizontal load. Pile foundations subjected to uplift force are needed to economically support such structure even in the case of rock layer. Therefore, this research performed the laboratory model tests with the variables, W/C ratio and sand proportion, to evaluate the effect of the mix proportion of grouting material on shaft resistance. In the case of cement paste, maximum and residual shaft resistance were distributed in uniform range irrespective of the changes of W/C ratio. However in the case of mortar, they were decreased with increasing W/C ratio, while they were increased and then decreased with increasing sand proportion. In the case of no sand, the maximum shaft resistance was about 540~560kPa regardless of the W/C ratio. When the sand proportion was 40%, it was about 770~870kPa depending on W/C ratio, which was about 40~50% higher than that without sand. The optimum proportion found in this research was around 40% of sand proportion and 80~100% of W/C ratio.

Tensile Strength Characteristics of Cement Paste Mixed with Fibers (섬유가 혼합된 시멘트 페이스트의 인장강도 특성에 관한 연구)

  • Park, Sung-Sik;Hou, Yaolong
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.3
    • /
    • pp.5-16
    • /
    • 2015
  • The characteristics of tensile strength of fiber-reinforced grouting (cement paste) injected into rocks or soils were studied. A tensile strength of such materials utilized in civil engineering has been commonly tested by an indirect splitting tensile test (Brazilian test). In this study, a direct tensile testing method was developed with built-in cylinder inside a cylindrical specimen with 15 cm in diameter and 30 cm in height. The testing specimen was prepared with 0%, 0.5%, or 1% (by weight) of a PVA or steel fiber reinforced mortar. A specimen with 5 cm in diameter and 10 cm in height was also prepared and tested for the splitting tensile test. Each specimen was air cured for 7 days or 28 days before testing. The tensile strength of built-in cylinder test showed 96%-290% higher than that of splitting tensile test. The 3D finite element analyses on these tensile tests showed that the tensile strength from built-in cylinder test had was 3 times higher than that of splitting tensile test. It is similar to experimental result. As an amount of fiber increased from 0% to 1%, its tensile strength increased by 119%-190% or 23%-131% for 7 days or 28 days-cured specimens, respectively. As a curing period increased from 7 days to 28 days, its strength decreased. Most specimens reinforced with PVA fiber showed tensile strength 14%-38% higher than that of steel fiber reinforced specimens.

An Experimental Study on the Microstructure Characteristics of Cementitious Composites by MIP (MIP를 통한 혼합 시멘트계 재료의 미세구조 특성에 관한 실험적 연구)

  • Kim, Tae-Sang;Jung, Sang-Hwa;Chae, Seong-Tae;Lee, Bong-Chun;Woo, Young-Je;Song, Ha-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.533-536
    • /
    • 2008
  • Recently, in Korea, there has been an increasing number of research papers published which are to improve durability of concrete, particularly by analyzing correlation between diffusivity of chloride and porosity/pore size distribution. In these studies, such test methods as mercury intrusion porosimetry(MIP), gas adsorption or image analysis method are used to analyze the microstructure of materials while MIP is most widely used for concrete. This study analyzes the results of porosity and pore size distribution of paste and concrete adding fly ash or blast furnace slag by using MIP equipment which is widely used for determining micro-porosity structure of cementitious materials. A variation in porosity and pore size distribution at the curing day 3, 7 and 28 has been observed by using MIP equipment for cement paste 35%, 40%, 45%, 50%, 55%, 60% of W/C when using $300kg/m^3$ of cement, 35%, 45%, 55% of W/C when replaced 60% with blast-furnace slag, and 35%, 45%, 55% of W/C when replaced 30% with fly ash. For long-term water cured normal OPC concrete and mixed concrete replaced 60% with blast-furnace slag powder, micro-structure of the sample has been analyzed by using MIP equipment when W/C indicated 40%, 45%, 50% respectively and the binder varied $300kg/m^3$, $350kg/m^3$, $400kg/m^3$, and $450kg/m^3$.

  • PDF

Resistance In Chloride ion Penetration and Pore Structure of Concrete Containing Pozzolanic Admixtures (포졸란재 함유 콘크리트의 세공구조와 염화물이온 침투 저항성)

  • 소양섭;소형석
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.100-109
    • /
    • 2002
  • Significant damage to concrete results from the intrusion of corrosive solutions, for example, dissolved chlorides corrode reinforcing steel and cause spatting. Effectively blocks the penetration of these solutions will eliminate or greatly reduce this damage and lead to increased durability. This study is to investigate the effects of pozzolanic admixtures, fly ash and silica fume, and a blast furnace slag on the chloride ion penetration of concretes. The main experimental variables wore the water-cementitious material ratios, the types and amount of admixtures, and the curing time. And it is tested for the porosity and pore size distributions of cement paste, chloride ion permeability based on electrical conductance, and 180-day ponding test for chloride intrusion. The results show that the resistance of concrete to the penetration of chloride ions increases as the w/c was decreased, and the increasing of curing time. Also, concrete with pozzolans exhibited higher resistance to chloride ion penetration than the plain concrete. The significant reduction in chloride ion permeability(charge passed) of concrete with pozzolans due to formation of a discontinuous macro-pore system which inhibits flow. It is shown that there is a relationship between chloride ion permeability and depth of chloride ion penetration of concrete, based on the pore structure (porosity and pore size distributions) of cement paste.

Surface Modification of Recycled Plastic Film-Based Aggregates for Use in Concrete (폐플라스틱 복합필름 기반 콘크리트용 골재의 표면 개질)

  • Kim, Tae Hun;Lee, Jea Uk;Hong, Jin-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.295-302
    • /
    • 2021
  • Surface modification of recycled plastic film-based aggregates is demonstrated to enhance the interaction between aggregates and cement paste. It is shown that the oxygen(O2) atmospheric pressure plasma(APP) treatment leads to a drastic increase in hydrophilicity. In case of the plasma treatment at 100W of RF power, 15/4sccm of O2/Ar flow rate and 30sec of discharging time, the water contact angle on the aggregates surface decreased from 104.5° to 44.0°. In addition, the contact angle of surface modified aggregates kept in air increased with time elapse. Improvement of hydrophilicity can be explained by the formation of new hydrophilic oxygen functional groups which is identified as C-OH, C-O-C, C=O, -COOH by X-ray photoelectron spectroscopy(XPS) analysis and Fourier-transform infrared spectroscopy(FT-IR). Therefore, it can be concluded that the plasma treatment process is an effective method to improve adhesion of the recycled plastic film-based aggregates and cement paste.

Geoenvironmental Influence on the Recycled Soil from Demolition Concrete Structures for using in Low Landfilling (건설폐토석의 성토에 따른 지반환경적 영향)

  • Shin, Eun-Chul;Kang, Jeong-Ku;Ahn, Min-Hee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.12
    • /
    • pp.21-30
    • /
    • 2011
  • The recycled soil that is proceeded from demolition concrete structures was analyzed by the methods of the physical and mechanical tests of soil and TCLP test to use the soil in low landfilling for the construction of an industrial complex. The laboratory test for diffusion of alkali ion in soil mass was analyzed by the methods of XRF and ICP. The fish toxicity test was also conducted to find an environmental influence. The recycled soil through the laboratory test satisfied the engineering property for low landfilling and the criteria of soil contamination. However, the solution which producted by 1:1 ratio of recycled soil and water contained the high pH concentration by alkali ion. The calcium hydroxide solution by CSH cement paste was estimated as the main reason why pH concentration is increased more than 9.0. The high pH concentration in recycled soils causes a toxicity to the livability of fishes. A diffusion area of pH concentration in the ground was analyzed by the Visual Modflow Ver. 2009 program based on geotechnical investigation. The high pH concentration in the recycled soils can be remained as high value due to cement paste in the long term period. Therefore, in the early stage of landfilling work, the mixing with the weathered granite soil is necessary to control the pH concentration.