• Title/Summary/Keyword: Cement-paste

Search Result 754, Processing Time 0.02 seconds

The Solidification of the Heavy Metal Ion by Using DSP Cement (DSP 시멘트를 이용한 중금속 이온의 고화)

  • 소정섭;최상홀
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.8
    • /
    • pp.889-894
    • /
    • 1996
  • This study was subjected to the stabilization of heavy metals using DSp cement. Heavy metal Cr and Pb ions were mixed with cement paste and hydration behavior and leaching property by heavy metal were exami-ned. It was found that, Cr ion accelerated the early hydration of the cement and has no accelerating effect in later hydration period. However Pb ion retarded the hydration of the cement for a early hydration periods. As a result of leaching test the quantity of leachant has a very low value and the influence of leached heavy metal effected on the environments is very weak.

  • PDF

Fundamental Study of Drying Shrinkage of Hardened Cement (시멘트 경화체의 건조수축에 관한 기초적 연구)

  • 이영진;김남호;정재동;이한봉
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.131-134
    • /
    • 1990
  • Many papers have been published on drying shrinkage of hardened cement paste and cement mortar. The causes of drying shrinkage in cement mortar may be attributed to its mechanical properties, temperature, curing time and the evaporation of water from cement mortar. This paper deals only with drying shrinkage in cement mortar. In particular, the relationships between water evaporation and drying shrinkage are discussed.

  • PDF

Optimization of Carbonated Cellulose Fiber-Cement Composites

  • Won, Jong-Pil;Bae, Dong-In
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.79-89
    • /
    • 2000
  • This research developed an accelerated curing processe for cellulose fiber reinforced cement composites using vigorous reaction between carbon dioxide and cement paste. A wet-processed cellulose fiber reinforced cement system was considered. Carbonation curing was used to complement conventional accelerated curing. The parametric study followed by optimization investigation indicated that the carbonation curing can enhance the productivity and energy efficiency of manufacturing cellulose fiber reinforced cement composites. This also adds environmental benefits to the technical and economical advantages of the technology.

  • PDF

Setting Characteristic Assessment of Cementitious Materials using Electrical Impedance Spectroscopy (전기 임피던스 분광법을 이용한 시멘트계 재료의 응결 특성 평가)

  • Lee, Jun-Cheol;Park, In-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.474-480
    • /
    • 2017
  • In this study, the evolution of electrical impedance of electric nodes was investigated to determine the setting time of cement paste using the electrical impedance spectroscopy method. The electric nodes were embedded in fresh cement paste and the electrical impedance signatures were continuously monitored. Vicat needle test and semi-adiabatic calorimetry test were also conducted to validate the electrical impedance spectroscopy method. During hydration period of cement paste, the magnitude of conductance gradually increased, and then started to decrease rapidly at a first certain time. After that, the magnitude of conductance gradually decreased at a second certain time. The times of turning point in the curves of magnitude of conductance seem to be related with the setting time by Vicat needle test. Also, the setting times by the electrical impedance spectroscopy method are well posed within the setting period estimated by the semi-adiabatic calorimetry test. Based on the results, it can be concluded that the setting time of cement paste can be effectively monitored through the electrical impedance spectroscopy method.

Characteristics on Compressive Strength of Cement Paste with Content of LRM Neutralized by Nitric Acid and Sulfuric Acid (질산 및 황산에 의해 중화된 액상화 레드머드의 첨가량에 따른 시멘트 페이스트의 압축강도 특성)

  • Kang, Suk-Pyo;Lee, Hee-Ra;Kang, Hye-Ju;Lee, Byeong-Gi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.333-340
    • /
    • 2019
  • Red mud is an industrial by-product produced during the manufacturing aluminum hydroxide (Al(OH)3) and aluminum oxide(Al2O3) from Bauxite ores. In Korea, aproximately 2 tons of red mud in a sludge form with 50% moisture content is produced when 1ton of Al2O3 is produced through the Bayer process. Neutralization of red mud will help to reduce the environmental impact caused due to its storage and also lessen significantly the ongoing management of the deposits after closure. It will also open opportunities for re-use of the residue which to date have been prevented because of the high pH. Moreover, attention to liquefied red mud(LRM) that does not require heating and grinding process for recycling is needed. In this paper, characteristics of compressive strength for cement paste with content of LRM neutralized by nitric acid and sulfuric acid. The results showed that compressive strength of cement paste with neutralized LRM is higher than that of cement paste with LRM.

Early Hydration of Portland Cement-Blast furnace Slag System by Impedance Techniques (임피던스 측정법을 이용한 포틀랜드 시멘트 -고로 슬래그계의 초기수화)

  • 송종택;김훈상;황인수
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.1
    • /
    • pp.99-107
    • /
    • 2002
  • Impedance Spectroscopy (IS) has been used to study microstructure and hydration mechanism of cement pastes. In this work, the early hydration behaviour of portland cement paste with different blame values and contents of blast-furnace slag was investigated by IS. As slag was added to portland cement, the values of $R_{t(s+1)}$ (the solid-liquid phase resistance) and $R_{t(int)}$ were decreased in the early hydration period. It showed that hydration of cement paste containing slag was slower than it of the reference cement paste. As the content of slag was increased, the values of $R_{t(s+1)}$ was decreased. Furthermore, the diameter of semicircle, $R_{t(int)}$ observed at 72 hours was decreased with the increment of slag content. However, the values of $R_{t(s+1)}$ and $R_{t(int)}$ were increased with blame value of slag from the early hydration period.

A Study on the Fluidity Retention of Cement Paste Added by Naphthalene Sulfonated Condensate and Polycarboxylic Acid Admixture (나프탈렌술폰산축합물과 폴리카르본산계 혼화제가 첨가된 시멘트 페이스트의 유동성 유지에 관한 연구)

  • 노재성;홍성수;김도수
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.5
    • /
    • pp.189-199
    • /
    • 1995
  • Naphthalene sulfonated condensate has been widely used as a superplasticizer for cement and concrete, but the application was limited due to its large slump loss with elapsed time. To complement this demerit of NSF, polycarboxylic acid copolymer from nlaleic anhydride and acryl~c acid(MA) was synthesized to retain the mobility of cement and concrete, and then mixed with NSF. The physical properties, such as fluidity, fluidityretention and rheology, were measured by applying these admixtures to cement paste as a function of elapsed time. And also compressive strength of mortar was measured with curing time. NIv-l and NM-2 containing 10, 20 wt% of MA respectively had a excellent fluidity and a fluidity- retention. In rheological property, the increases of shear stress and viscosity with elapsed time were delayed with the increasing of shear rate in cornparision with NSF only. The marked slump loss of cement paste could be controlled by these admixture. Also the added ainount of admixture and the ratio of water to cement affected these properties.

Microstructure Analysis of Cement Composite containing PMHS Emulsion to Improve Hydrophobic (소수성 증진을 위한 PMHS 유액 혼입 시멘트 복합체의 미세구조 분석)

  • Kim, Younghwan;Oh, Hongseob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.25-32
    • /
    • 2021
  • For developing the durable eco-concrete, water-repellent and hydrophobic emulsion were prepared by stirring and mixing polymethyl hydrosiloxane and polyvinyl alcohol. After adding the PMHS emulsion cement paste, the hydration reaction characteristics and the change in chemical composition were analyzed through BSE and EDS analysis, and the micropores were evaluated by MIP test. Cement mixed with PMHS emulsion was analyzed to increase the hydration reactivity and to decrease the capillary porosity, but it was found that the capillary porosity varies depending on the degree of dispersion of the emulsion in the cement paste. In the case of the emulsion containing metakaolin, there was little difference in hydration degree and porosity from the case of using only the PMHS emulsion. However, when the cement surface was coated with PMHS emulsion, the contact angle was found to increase significantly compared to OPC, and it was analyzed that especially when PVA fiber was used together, it changed to a hypohydrophobic surface.

Prediction of the Rheological Properties of Cement Mortar Applying Multiscale Techniques (멀티스케일 기법을 적용한 시멘트 모르타르의 유변특성 예측)

  • Eun-Seok Choi;Jun-Woo Lee;Su-Tae Kang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.69-76
    • /
    • 2024
  • The rheological properties of fresh concrete significantly influence its manufacturing and performance. However, the diversification of newly developed mixtures and manufacturing techniques has made it challenging to accurately predict these properties using traditional empirical methods. This study introduces a multiscale rheological property prediction model designed to quantitatively anticipate the rheological characteristics from nano-scale interparticle interactions, such as those among cement particles, to micro-scale behaviors, such as those involving fine aggregates. The Yield Stress Model (YODEL), the Chateau-Ovarlez-Trung equation, and the Krieger-Dougherty equation were utilized to predict the yield stress for cement paste and mortar, as well as the plastic viscosity. Initially, predictions were made for the paste scale, using the water-cement ratio (W/C) of the cement paste. These predictions then served as a basis for further forecasting of the rheological properties at the mortar scale, incorporating the same W/C and adding the cement-sand volume ratio (C/S). Lastly, the practicality of the predictive model was assessed by comparing the forecasted outcomes to experimental results obtained from rotational rheometer.

Water Repellent Characteristics of Cement Paste Added Silane/siloxane-based Emulsion Water Repellent (실란/실록산계 에멀전 발수제를 혼입한 시멘트 페이스트의 발수특성)

  • Kang, Suk-Pyo;Hong, Seong-Uk;Kang, Hye-Ju;Yang, Seung Hyeon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.1
    • /
    • pp.31-39
    • /
    • 2021
  • The aim of this paper is to improve durability of cement paste by imparting hydrophobicity to the surface and sphere of cement-based materials. A cement paste mixed with a silane/siloxane-based water repellent, and the initial hydration performance, flow performance, and age-specific compressive strength were measured. In addition, the water contact angle, SEM, and XRD before and after surface polishing were measured. When 0.5% of the silane/siloxane-based water repellent was mixed into the cement paste, the compressive strength increased, but the compressive strength decreased as the mixing amount increased by 1.5% and 3.0%. When a silane/siloxane water repellent was incorporated into the cement paste, the hydrophilicity was improved and the contact angle was increased due to hydrophobicity. In addition, the contact angle after surface polishing was found to be larger than the contact angle before surface polishing.