• Title/Summary/Keyword: Cement hydrate

Search Result 139, Processing Time 0.02 seconds

The characteristics of mineral hydrate insulation material using activated cement prepared from pilot plant activation system

  • Seo, Sung Kwan;Chu, Yong Sik;Kim, Tae Yeon;Kim, Yoo
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.428-433
    • /
    • 2018
  • In this study, using the pilot plant activation system, the activated cement has been manufactured and then applied to the manufacturing process of mineral hydrate insulating material. The fineness of the activated cement is controlled at $5,000cm^2/g$ and $7,500cm^2/g$ and the features of mineral hydrate insulating material, using OPC and the activated cement for each degree of fineness, has been analyzed. As the result of analyzing the crystal habit of the manufactured mineral hydrate insulting material, it is analyzed that the main crystal phase of specimen is tobermorite and some quartz peak has been detected. As the degree of fineness of the activated cement increases, the height of bubble of slurry increases as well, whereas the tendency for the density character to decrease has been detected. Along with it, as the density character decreases, the compression strength has decreases, whereas the tendency for the thermal characteristic to increases has been detected. The main features of mineral hydrate insulating material, using the activated cement with the fineness of $7,500cm^2/g$, the compression strength of 0.36 MPa, and the thermal conductivity of $0.044W/m{\cdot}K$, presents the excellent features as insulation.

A Quantitative Analysis on Feature of Hydrate Affecting Early-Age Strength (콘크리트 초기강도에 영향을 미치는 수화물의 정량분석에 관한 연구)

  • Song Tae Hyeob;Lee Mun Hwan;Lee Sea Hyun;Park Dong Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.583-586
    • /
    • 2005
  • Strength of concrete is very important factor in design and quality management and may represent overall quality of concrete. Such strength of concrete may differ depending on amount of cement mixed, water and fine aggregate ratio. Classic concrete products have been produced mainly with ordinary portland cement(hereinafter 'cement'), water and fine aggregate as shown above, but various additives and mixture materials have been used for concrete manufacturing, along with development of high functional concrete and diversification of structures. Various kinds of chemical mixtures agents and mixture materials have been used as it requires concretes with other features which cannot be solved with existing materials only, such as high strength, high flexibility and no-separation in the water. Such addition of various mixture agents may cause change in cement hydrate, affecting strength. Hydration of cement is the process of producing potassium hydroxide, C-S-H, C-A-H and Ettringite, while causing heat generation reaction after it is mixed with water, and generation amounts of such hydrates play lots of roles in condensation and hardening. This study aims to analyze its strength and features with hydrates by making specimen according to curing temperature, types of mixture agent, mixing ratio and ages and by analyzing such hydrates in order to analyze role of cement hydrate on early strength of concrete.

  • PDF

Water-repellency and Bonding Characteristics of the Cement Hydrate-Organic Acid Compound (시멘트 수화물-유기산의 결합특성과 그 Compound의 발수성)

  • Rho, Jae-Seong;Cho, Heon-Young;Hong, Seong-Soo;Choi, Jeong-Bong
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.639-648
    • /
    • 1992
  • For recycling cement hydrate(CH) as waterproofers for mortar and concrete or a filler for rubber & plastics, the cement hydrates were treated with stearic acid(SA). And the bonding characteristics and the water repellency of the CH-SA compounds were investigated by using FT-IR, TGA, SEM, XRD, and contact angle measuring apparatus. Water tightness of the remitars used CH-SA compounds was also tested. The results are summarized as follows : 1) If the cement hydrates are treated with over 2.0% of stearic acid, the CH-SA compounds show very strong water repellency. 2) The stearic acids are solidified on the surfaces of cement hydrate in calcium stearate and aluminium stearate. 3) If CH-SA compounds which is cement hydrate treated with 5~10% of stearic acid are used 3%~6% in remitar, water absorption ratio and water permeatility ratio of remitar are decreased in below 30% of those of the ordinary remitar.

  • PDF

FIXATION OF LEAD CONTAMINANTS IN Pb-DOPED SOLIDIFIED WASTE FORMS

  • Lee, Dong-Jin;Chung, David;Hwang, Jong-Yeon;Choi, Hyun-Jin
    • Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.101-108
    • /
    • 2007
  • Fixation of lead contaminants in the solidification/stabilization using Portland cement has been investigated by X-ray diffraction, scanning electron microscopy and compressive strength. The presence of lead was observed to produce lead carbonate sulfate hydroxide ($Pb_4SO_4(CO_3)_2(OH)_2$), lead carbonate hydroxide hydrate ($3PbCO_3{\cdot}2Pb(OH)_2{\cdot}H_2O$) and two other unidentified lead salts in cavity areas and was observed to significantly retard the hydration of cement. By 28 days, howevere, the XRD peaks of most of the lead precipitates have essentially disappeared with only residual traces of lead carbonate sulfate hydroxide and lead carbonate hydroxide hydrate evident. After 28 days of curing, hydration appears well advanced with a strong portlandite peak present though C-S-H gel peaks are not particularly evident. Lead species produced with the dissolution of lead precipitates are fixed into the cement matrix to be calcium lead silicate hydrate (C-Pb-S-H) during cement-based solidification.

Hydrate Characteristics of Cement Mixtures with Expansion Additive According to Age and Improvement Effect on Initial Strength (팽창재를 사용한 시멘트 혼합물의 재령별 수화물의 특성과 초기강도 개선 효과)

  • Song, Tae-Hyeob;Park, Ji-Sun;Lee, Sea-Hyun
    • Korean Journal of Materials Research
    • /
    • v.23 no.10
    • /
    • pp.599-605
    • /
    • 2013
  • CSA, a cement mineral compound that is mainly composed of $3CaO{\cdot}3Al_2O_3{\cdot}CaSO_4$, generates ettringite as a hydration product after a reaction with glass (lime), gypsum and water to speed up the hardening process and enhance the strength and degree of expansion. When used as a cement admixture, there is increased production of ettringite, which can improve the initial strength in the first three days and ameliorate the reduction in the initial strength caused by the use of fly ash in particular. In this study, a hydrate analysis was performed using XRD and SEM after substitution with fly ash (30%) and CSA (8%) with the goal of observing the effect of CSA on the initial strength of a cement mixture containing fly ash. The results of the analysis showed that an addition of CSA promoted the production of ettringite and improved the initial strength, resulting in the generation of hydrates, which can effectively enhance the long-term strength of these materials.

Mechanical Properties of Hydrated Cement Paste: Development of Structure-property Relationships

  • Ghebrab, Tewodros T.;Soroushian, Parviz
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • Theoretical models based on modern interpretations of the morphology and interactions of cement hydration products are developed for prediction of the mechanical properties of hydrated cement paste (hcp). The models are based on the emerging nanostructural vision of calcium silicate hydrate (C-S-H) morphology, and account for the intermolecular interactions between nano-scale calcium C-S-H particles. The models also incorporate the effects of capillary porosity and microcracking within hydrated cement paste. The intrinsic modulus of elasticity and tensile strength of hydrated cement paste are determined based on intermolecular interactions between C-S-H nano-particles. Modeling of fracture toughness indicates that frictional pull-out of the micro-scale calcium hydroxide (CH) platelets makes major contributions to the fracture energy of hcp. A tensile strength model was developed for hcp based on the linear elastic fracture mechanics theories. The predicted theoretical models are in reasonable agreements with empirical models developed based on the experimental performance of hcp.

Effect of Gypsum and Cement on Hydrothermal Reaction in Fly Ash-Lime System (플라이 애쉬-석회계 수열반응에 있어서 석고 및 시멘트의 영향)

  • 안민선;박태균;황인수;김병익
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.10
    • /
    • pp.1030-1039
    • /
    • 1998
  • In fly ash-lime system the effects of reaction condition amounts of gypsum and cement and CaO/SiO2 ratio on the hydrates by hydrothermal reaction were investigated. The tobermorite phases were not observed in hy-drothermal reaction of fly ash lime because of the hydrate rate was very slow. The compressive strength and the hydration rate increased with increasing the amount of gypusm and cement and the optimum amounts of gypsumo and cement were 5wt and 20wt% respectively. The specimen which CaO/SiO2 ratio is 0.85 was shown the maximum compressive strength and the tobermorite phase within reaction time 2 hours.

  • PDF

The Influence of Polymers on the Hydration of Modified Cement System (속경형시멘트의 수화거동에서 폴리머의 영향)

  • Park, Phil-Hwan;Lee, Kyoung Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.9
    • /
    • pp.496-501
    • /
    • 2007
  • The properties of the polymer-modified mortars are influenced by the polymer film, cement hydrates and the combined structure between the organic and inorganic phases. Also, this quality of polymer modified cement strongly depend on weather condition. To overcome this problem, polymer-modified cement based on rapid setting cement mortars were prepared by varying polymer/cement mass ratio (P/C) with a constant water/cement mass ratio of 0.5. The effect of polymer on the hydration of this polymer cement is studied on different curing temperature. The results showed that the polymer mortar which is modified with rapid setting cement have superior physical strength properties on independent curing temperature. In addition the PIC ratio, the compressive strength, flexural strength, tensile strength and adhesion strength of mortar is enhances and polymer-modified cement based on rapid setting cement is more beneficial to the improvement of the mortar properties in jobsite.

Treatment of Mixed Fluoride Wastewater Using Cement Paste (시멘트 페이스트를 이용한 혼합 불산폐수 처리)

  • Byun, Hye-Jung;Choi, Won-Ho;Park, Joo-Yang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.8
    • /
    • pp.909-914
    • /
    • 2007
  • Fluorine compounds are the essential chemicals for wet processes of semiconductor and LCD production line. Problems of conventional treatments for fluoride wastewater are their high operation costs and low fluoride removal capacity. In this study, cement paste containing various Ca-bearing hydrates such as portlandite, calcium silicate hydrate(CSH), and ettringite was investigated for fluoride removal. The objectives of this study are to assess the feasibility of using cement paste cured mixture of cement and water as an alternative agent for treatment of fluoride wastewater and to investigate fluoride removal capacity of the cement paste. The performance of cement paste was comparable to that of lime in the kinetic test. In column experiment where the effluent fluoride concentrations were below 0.5 mg/L. Then the leached calcium reached the maximum level of 800 mg/L. The nitrate reduced to the level of less than 10 mg/L. Nitrate in the wastewater was exchanged with interlayer sulfate of these cement hydrate LDHs. Phosphate concentration could be reduced to 10 mg/L by forming calcium phosphate. These results indicate that the cement paste generally has advantageous characteristics as an economical and viable substitute for lime to remove fluoride.

Hydration of Modified Converter Slag (개질한 전노슬래그의 수화반응)

  • 엄태선;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.3
    • /
    • pp.157-162
    • /
    • 1981
  • A converter slag has been heat-treated above melting point at reduced condition by cokes. As the result, most iron was separated. To make hydraulic compounds, calcium oxide was added to the reduced converter slag and the mixtures were sintered. This modified converter slag clinker mainly contained tricalcium silicate and calcium aluminates, and have a great potential to be a good hydraulic cement. The hydrates of the hydraulic compounds and gypsum with and without granulated slags, were mainly C-S-H, ettringite, calcium monosulfoaluminate hydrate, calcium aluminate hydrate, and $Ca(OH)_2$

  • PDF