• Title/Summary/Keyword: Cement hardened

Search Result 383, Processing Time 0.022 seconds

A Study about the Strength and Microstructure of Hardened Cement Pastes Including Nanofibers (나노 섬유를 혼합한 시멘트 페이스트의 미세구조와 강도에 대한 연구)

  • Nguyen, Tri N.M;Kim, Jung Joong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.177-182
    • /
    • 2020
  • In this study, the effect of nanofibers in cement pastes on the compressive and tensile strength of hardened cement pastes was studied. Two types of nanofibers, nylon 66 nanofibers and carbon nanotube-nylon 66 hybrid nanofibers, were manufactured by electrospinning methodology and mixed in cement powder respectively. The specimens for experiments were prepared by water to cement ratio of 0.5 and cured in water for 28 days. The effect of nanofibers on the increase of the compressive and tensile strength were confirmed by the experimental results. The well-linking effect of nanofibers in the microstructure of the hardened cement pastes has been found by scanning electron microscope (SEM) analysis and well-explained for the increase in mechanical strength. Besides, field emission transmission electron microscope (FE-TEM) analysis and thermal gravimetric analysis (TGA) have also been conducted to analyze the properties of nanofibers as well as the microstructure of the hardened modified cement pastes.

The Experimental Study on the Development of Estimation Technique for the Mix Proportion of Hardened Concrete (경화 콘크리트의 배합비 추정기법 개발에 관한 실험적 연구)

  • 이준구;박광수;김석열;김명원;김관호;박미현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.961-966
    • /
    • 2000
  • It is difficult to change or remedy concrete structure after hardened. It is usual to evaluate the quality of hardened concrete using several test method. This study was performed to make fundamental data that could be used to evaluate the quality of hardened concrete. This study is to estimate mix proportion of hardened concrete. Each elements of concrete needed different estimation methods. First, the cement that handled by the most important compounds measured by XRF(X-ray fluorecence) machine with scanning Ca-K${\alpha}$. Second, the coarse aggregate that divided by maximum size measured by the area comparison method that starts from the assumption of uniform distribution. Third, the fine aggregate measured by the weight comparison method that needs several prerequsite constants which concerned cement hydration reaction. Fourth, the water content would be estimated by expert system that has data base of design data, the contents of above estimation results, the characteristics of concrete strength. As the result of the above research, some conclusions are as follows. The cement estimation method resulted by reliability of mean 96.7%, standard deviation 3.92. The area comparison method resulted by reliability of mean 95.3%, standard deviation 2.08. The weight comparison method resulted by reliability of mean 93.3%, standard deviation 3.35.

Effects of Blending Materials on the High Strength of Hardened Cement Paste (시멘트 경화체의 강도특성에 미치는 혼합재료의 영향)

  • 추용식;김정환
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.12
    • /
    • pp.1536-1544
    • /
    • 1994
  • DSP technique was applied to improve the high strength characteristics of hardened cement paste using pozzolan materials as blending materials, and pozzolan reactivity was investigated. Pozzolanic materials such as diatomaceous earth, fly ash and hydrated silica were used as blending material. And also superplasticizer was added to cement for molding the specimens. After curing for 60 days, the specimens substituted with 10 and 15 wt% of diatomaceous earth showed better strength characteristics than the specimen with fly ash. The specimen substituted 7 wt.% of hydrated silica exhibited excellent strength with above 800 kg/$\textrm{cm}^2$.

  • PDF

Effect of Polymers on the Freezing and Thawing Resistance of Hardened Cement Mortar (시멘트 경화체의 동결융저항성에 미치는 Polymer의 영향)

  • 이선우;김정환;최상흘;한기성
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.7
    • /
    • pp.509-516
    • /
    • 1991
  • The effect of various polymers on the freeze-thaw resistance of hardened cement mortar was investigated. For this study, styrene butadiene rubber (SBR), ethylene vinyl acetate (EVA), polyvinyl alcohol (PVA) were used to prepare cement mortar specimen, and then freeze-thaw experiment was carried out. By adding SBR adn EVA to the specimen, the freeze-thaw resistance of specimens was improved, but when PVA was added to the specimen, its freeze-thaw resistance was lowered. Particularly, the specimens which were added 5, 10% of SBR and 5% of EVA showed excellent freeze-thaw resistance in the salt environment.

  • PDF

Rheology and Strength Properties Improvement of Recycle Cement by Admixture (혼화재료에 의한 재생시멘트의 레올로지 및 강도특성 개선)

  • 오상균;임승준;김정길
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.89-94
    • /
    • 2003
  • Recently, the study to reduce and recycle industrial waste is underway vigorously in the various fields of industry according to the conservation of environment and resources. In construction work, the disposal problem of its waste and environmental disruption have already been serious all over the world. However the recycle of waste concrete is still at an early stage, recycled aggregate from waste concrete have only used those as subsidiary road fillers. The research institute and the company make the study that it is about the properties of recycled aggregate and those structural capacity since 1990. Through the experimentation last year, we know that strength and fluidity of recycle cement are inferior to normal cement, and admixing aggregate powder deteriorates its strength. The purpose of this study is to search for appropriate heating time and to improve performance of the recycle cement while heating hardened cement which is crushed, we investigate separating aggregate from hardened cement by preheating and improvement of strength and fluidity inrecycle cement which contains admixture.

  • PDF

A Study on the Pore Structure of Hardened Alumina Cement Pste by Water Vapor Sorption ($H_2O$ 증착법에 의한 알루미나 시멘트 경화체의 기공구조 연구)

  • 임용무;장복기
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.4
    • /
    • pp.273-278
    • /
    • 1993
  • Using water vapor (de)sorption isotherm, pore structure analyses were performed for hardened cement pastes by a combination of the "MP-method" for the micropores and the "corrected modelless method" for the wide pores. This work was carried out to investigate the pore structure and to understand the microstructural basis of alumina cement developing much higher strength than Portland cement. Alumina cement shows extremely low microporosity and its wide pores are also composed mainlyof pores with very small radii. And the pore structure analysis results are consistent with the high strength property of alumina cement.y of alumina cement.

  • PDF

Numerical investigation on tortuosity of transport paths in cement-based materials

  • Zuo, Xiao-Bao;Sun, Wei;Liu, Zhi-Yong;Tang, Yu-Juan
    • Computers and Concrete
    • /
    • v.13 no.3
    • /
    • pp.309-323
    • /
    • 2014
  • Based on the compositions and structures of cement-based materials, the geometrical models of the tortuosity of transport paths in hardened cement pastes, mortar and concrete, which are associated with the capillary porosity, cement hydration degree, mixture particle shape, aggregate volume fraction and water-cement ratio, are established by using a geometric approach. Numerical simulations are carried out to investigate the effects of material parameters such as water-cement ratio, volume fraction of the mixtures, shape and size of aggregates and cement hydration degree, on the tortuosity of transport paths in hardened cement pastes, mortar and concrete. Results indicate that the transport tortuosity in cement-based materials decreases with the increasing of water-cement ratio, and increases with the cement hydration degree, the volume fraction of cement and aggregate, the shape factor and diameter of aggregates, and the material parameters related to cement pastes, such as the water-cement ratio, cement hydration degree and cement volume fraction, are the primary factors that influence the transport tortuosity of cement-based materials.

The Experimental Study on the Reanalysis of Mixing Proportion for Hardened Concrete Using X-ray Fluorescence (XRF를 활용한 경화 콘크리트의 배합비 역추척에 관한 실험적 연구)

  • 이준구;박광수;이응찬;김한중;김명원;박미현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.791-794
    • /
    • 1999
  • Exact estimation of cement content in a hardened concrete can provide useful data to evaluate the quality and strength of the concrete and might be used to inspect the quality of precast concrete secondary products. Observation obtained in this research included : (1) the volume of coarse aggregate in the hardened concrete measured by the area comparison method has a high accuracy ; (2) the cement content in the mortar and the X-ray intensity of Ca-K$\alpha$ have a correlation factor of 0.96 ; (3) the cement content in the ready mixed concrete was estimated with high accuracy such as correlation factor of 0.99 and standard deviation of 0.64.

  • PDF

Properties of Hardened Mortar depending on Combinations Blast Furnace Slag and Chlorine By-pass System Dust (고로슬래그 및 CBS Dust의 혼합비율 변화에 따른 경화 모르타르의 특성)

  • Hyun, Seung-Yong;Han, Jun-Hui;Kim, Kyoung-Hoon;Lee, Dong-Joo;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.116-117
    • /
    • 2018
  • The aim of this study is to investigate the properties of hardened mortar with chlorine by-pass system(CBS) in cement production in blast furnace slag(BS) mixed cement. Compressive strength had a tendency to be increased when the CBS Dust was replaced by 10% at the BS replacement rate of 0%. The 65% combination of BS showed a tendency to decrease as the CBS Dust exchange rate increases. Flexural strength was reduced as CBS Dust exchange rate increases in BS replacement ratio of 0%. The use of 5% of CBS dust can contribute to enhance the quality of non reinforced concrete.

  • PDF

Pore Structure Changes in Hardened Cement Paste Exposed to Elevated Temperature (고온 환경에 노출된 시멘트 경화체의 공극 구조 변화)

  • Kang, Seung-Min;Na, Seung-Hyun;Kim, Kyung-Nam;Song, Myong-Shin
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.1
    • /
    • pp.48-55
    • /
    • 2015
  • Hardened cement-based materials exposed to the high temperatures of a fire are known to experience change in the pore structure as well as microstructural changes that affect their mechanical properties and tend to reduce their durability. In this experimental investigation, hardened Portland cement pastes were exposed to elevated temperatures of 200, 400, 600, 800, and $1000^{\circ}C$ for 60 minutes, and the resulting damage was studied by thermogravimetry (TG), mercury intrusion porosimetry (MIP) and density measurements. These results revealed that the residual compressive strength is increased at temperatures greater than $400^{\circ}C$ due to a small pore size of 3 nm and/or rehydration of the dehydrated cement paste. However, a loss of the residual strength occurs at temperatures exceeding 500 and $600^{\circ}C$. This can be attributed to the decomposition of hydrates such as portlandite and to an increase in the total porosity.