• Title/Summary/Keyword: Cement exposure

Search Result 181, Processing Time 0.022 seconds

Experimental Investigation on Variation of Internal Relative Humidity and Temperature due to Hydration of Concrete at Early Age (내부 온습도 측정을 통한 초기재령의 콘크리트 내부 습도 및 수화열 변화 특성 분석)

  • Hong, Sung-Ki;Park, Cheol-Woo;Park, Sung-Jae;Kang, Tae-Sung;Kim, Hee-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.741-744
    • /
    • 2008
  • Quality control of early age concrete significantly influences the long term performance. Primary factors for early age concrete quality control should include the relative humidity and temperature variation, and these are more important as structures become massive and huge. Temperature raise due to cement hydration causes stress, which can develop to cracking with internal and/or external restraints. Exposure conditions including ambient temperature, humidity and wind also significantly affect the cracking behavior of early age concrete. Among many of studies on the early age concrete behavior, investigation on the variation of temperature and relative humidity internal of concrete is not common. That is in part because the difficulties in measuring the relative humidity and temperature inside the concrete. This study used a digital sensor with an appropriate logger to measure internal temperature and relative humidity. This direct measuring method is expected to provide more reliable and comprehensive data acquisition on the early age behavior of concrete.

  • PDF

Method development for quantitative analysis of naturally occurring radioactive nuclides in building materials (실내 건축자재 중 천연방사성핵종의 정량분석법 연구)

  • Lim, Jong-Myoung;Lee, Hoon;Kim, Chang-Jong;Jang, Mee;Park, Ji-Young;Chung, Kun Ho
    • Analytical Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.252-261
    • /
    • 2017
  • Naturally occurring radioactive materials (NORMs) increase radiation exposure to the public as these materials are concentrated through artificial manufacturing processes by human activities. This study focuses on the development of a method for the quantitative analysis of $^{232}Th$, $^{235}U$, and $^{238}U$ in building materials. The accuracy and precision of inductively coupled plasma mass spectrometry (ICP-MS) for determination of digestion processes was evaluated for certified reference materials (CRMs) digested using various mixed acid (e.g., aqua regia, hydrofluoric acid, and perchloric acid) digestions and a $LiBO_2$ fusion method. The method validation results reveal that a $LiBO_2$ fusion and $Fe(OH)_3$ co-precipitation should be applied as the optimal sample digestion process for the quantitative analysis of radionuclides in building materials. The radioactivity of $^{232}Th$, $^{235}U$, and $^{238}U$ in a total of 51 building material (e.g., board, brick, cement, paint, tile, and wall paper) samples was quantitatively analyzed using an established process. Finally, the values of $^{238}U$ and $^{232}Th$ radioactivity were comprehensively compared with those from the indirect method using ${\gamma}$-spectrometry.

An Experimental Study on the Application of LIBS for the Diagnosis of Concrete Deterioration (콘크리트 열화 진단의 LIBS 적용을 위한 실험적 연구)

  • Woo, Sang-Kyun;Chu, In-Yeop;Youn, Byong-Don
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.140-146
    • /
    • 2017
  • It is laser induced breakdown spectroscopy(LIBS) that enables qualitative and quantitative analysis of the elements contained in unknown specimen by comparing the wavelength characteristics of each element obtained from the spectral analysis of the standard specimen with the wavelength analysis results from unknown specimens. In this study, the applicability of LIBS to the analysis of major deterioration factors affecting concrete durability was experimentally analyzed. That is, the possibility of applying LIBS to the diagnosis of concrete deterioration by studying the quantitative detection of harmful deteriorating factors on chloride, sulfate and carbonated mortar specimens using LIBS was studied. As a result of LIBS test for each chloride and sulfate specimen, the LIBS spectral wavelength intensity of chlorine and sulfur ions increased linearly with increasing concentration. Carbon ion LIBS spectral wave intensities of carbonated specimens increased nonlinearly over the duration of carbonation exposure. From the above results, it can be partially confirmed that LIBS can be applied to the diagnosis of concrete deterioration. In case of concrete carbonation, it is presumed that carbon content is contained in the cement itself and is different from the detection of chloride and sulfate specimen. Therefore, it is considered that more various parameter studies should be performed to apply LIBS to concrete carbonation.

Evaluation of Fine Dust Diffusion and Contamination Degree : Focused on the Operation Status of Donghae Port (항만 인근 미세먼지 노출 영향권 및 오염도 분석 :동해항 운영현황을 중심으로)

  • Hwang, Je-Ho;Kim, Si-Hyun;Kang, Dal-Won
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.251-258
    • /
    • 2022
  • Donghae Port is adjacently located to a residential area wherein 26,933 generations are creating a living environment. The areas comprise Song-jeong village (5,754 generations) and Bukp-yeong village (21,179 generations). Major cargoes handled in Donghae Port are dusty limestone, cement, anthracite, and bituminous coal, etc. In the process of handling such cargoes, air pollutants including oxide dust and fine dust which adversely impact the living conditions and health of residents are generated, causing air pollution in the vicinity of the port. Currently, Donghae Port is making an effort to improve the operation environment of the infrastructure and equipment in stages, for the purpose of reducing air pollutant emissions caused by the port industries in a long-term perspective. In this study, the sphere of influence of fine dust exposure and the degree of air pollution in the surrounding area were analyzed such as the state of fine dust concentration and diffusion in the vicinity of Donghae Port, fine dust diffusion pattern and spatial distribution of high-concentration considering wind direction and speed characteristics during the day and seasonal cycles. A more effective plan to reduce the concentration of fine dust in nearby areas by combining reduction plan, is being developed in terms of improvement regarding port infrastructure and equipment, and reduction measures considering the characteristics of the atmosphere environment according to the daytime, nighttime and season.

Development of Accident Response Information Sheets for Hydrogen Fluoride (불화수소에 대한 사고대응 정보시트 개발)

  • Yoon, Young Sam;Park, Yeon Shin;Kim, Ki Joon;Cho, Mun Sik;Hwang, Dong Gun;Yoon, Jun heon;Choi, Kyung Hee
    • Korean Journal of Hazardous Materials
    • /
    • v.2 no.1
    • /
    • pp.18-26
    • /
    • 2014
  • We analyzed the demand of competent authorities requiring adequate technical information for initial investigation of chemical accidents. Reflecting technical reports on chemical accident response by environmental agencies in the U.S. and Canada, we presented information on environmental diffusion and toxic effects available for the first chemical accident response. Hydrogen fluoride may have the risk potential to corrode metals and cause serious burns and eye damages. In case of inhalation or intake, it could have severe health effects. The substance itself is inflammable, but once heated, it decomposes producing corrosive and toxic fume. In case of contact with water, it can produce toxic, corrosive, flammable or explosive gases and its solution, a strong acid, may react fiercely with a base. In case of hydrogen fluoride leak, the preventive measures are to decrease steam generation in exposed sites, prevent the transfer of vapor cloud and promptly respond using inflammable substances including calcium carbonate, sodium bicarbonate, ground limestone, dried soil, dry sand, vermiculite, fly ash and powder cement. The method for fire fighting is to suppress fire with manless hose stanchions or monitor nozzles by wearing the whole body protective clothing equipped with over-pressure self-contained breathing apparatus from distance. In case of transport accident accompanied with fire, evacuation distance is 1,600m radius. In cae of fire, fire suppression needs to be performed using dry chemicals, CO2, water spray, water fog, and alcohol-resistance foam, etc. The major symptoms by exposure route are dyspnoea, bronchitis, chemical pneumonia and pulmonary edema for respiration, skin laceration, dermatitis, burn, frostbite and erythema for eyes, and nausea, diarrhea, stomachache, and tissue destruction for digestive organs. In atmosphere, its persistency is low, and its bioaccumulation in aquatic organism is also low.

Time Dependent Evaluation of Corrosion Free Life of Concrete Tunnel Structures Based on the Reliability Theory (해저 콘크리트 구조물의 신뢰성 이론에 의한 시간 의존적 내구수명 평가)

  • Pack, Seung Woo;Jung, Min Sun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.142-154
    • /
    • 2011
  • This study predicted the probability of corrosion initiation of reinforced concrete tunnel boxes structures using the Monte Carlo Simulation. For the inner wall and outer wall in the tunnel boxes, exposed to airborne chloride ion and seawater directly respectively, statistical values of parameters like diffusion coefficient D, surface chloride content $C_s$, cover depth c, and the chloride threshold level $C_{lim}$ were examined from experiment or literature review. Their average values accounted for $3.77{\times}10^{-12}m^2/s$, 3.0% by weight of cement, 94.7mm and 45.5mm for outer wall and inner wall, respectively, and 0.69% by weight of cement for D, $C_s$, c, and $C_{lim}$, respectively. With these parametric values, the distribution of chloride contents at rebar with time and the probability of corrosion initiation of the tunnel boxes, inner wall and outer wall, was examined by considering time dependency of chloride transport. From the examination, the histogram of chloride contents at rebar is closer to a gamma distribution, and the mean value increases with time, while the coefficient of variance decreases with time. It was found that the probability of corrosion initiation and the time to corrosion were dependent on the time dependency of chloride transport. Time independent model predicted time to corrosion initiation of inner wall and outer wall as 8 and 12 years, respectively, while 178 and 283 years of time to corrosion was calculated by time dependent model for inner wall and outer wall, respectively. For time independent model, the probability of corrosion at 100 years of exposure for inner wall and outer wall was ranged 59.5 and 95.5%, respectively, while time dependent model indicated 2.9 and 0.2% of the probability corrosion, respectively. Finally, impact of $C_{lim}$, including values specified in current codes, on the probability of corrosion initiation and corrosion free life is discussed.

Asbestos Trend in Korea from 1918 to 2027 Using Text Mining Techniques in a Big Data Environment (빅데이터환경에서 텍스트마이닝 기법을 활용한 한국의 석면 트렌드 (1918년~2027년))

  • Yul Roh;Hyeonyi Jeong;Byungno Park;Chaewon Kim;Yumi Kim;Mina Seo;Haengsoo Shin;Hyunwook Kim;Yeji Sung
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.457-473
    • /
    • 2023
  • Asbestos has been produced, imported and used in various industries in Korea over the past decades. Since asbestos causes fatal diseases such as malignant mesothelioma and lung cancer, the use of asbestos has been generally banned in Korea since 2009. However, there are still many asbestos-containing materials around us, and safe management is urgently needed. This study aims to examine asbestos-related trend changes using major asbestos-related keywords based on the asbestos trend analysis using big data for the past 32 years (1991 to 2022) in Korea. In addition, we reviewed both domestic trends related to the production, import, and use of asbestos before 1990 and asbestos-related policies from 2023 to 2027. From 1991 to 2000, main keywords related to asbestos were research, workers, carcinogens, and the environment because the carcinogenicity of asbestos was highlighted due to domestic production, import, and use of asbestos. From 2001 to 2010, the main keywords related to asbestos were lung cancer, litigation, carcinogens, exposure, and companies because lawsuits were initiated in the US and Japan in relation to carcinogenicity due to asbestos. From 2011 to 2020, the high ranking keywords related to asbestos were carcinogen, baseball field, school, slate, building, and abandoned asbestos mine due to the seriousness of the asbestos problem in Korea. From 2021 to present (2023), the main search keywords related to asbestos such as school, slate (asbestos cement), buildings, landscape stone, environmental impact assessment, apartment, and cement appeared.

A study on performance evaluation of fiber reinforced concrete using PET fiber reinforcement (PET 섬유 보강재를 사용한 섬유 보강 콘크리트의 성능 평가에 관한 연구)

  • Ri-On Oh;Yong-Sun Ryu;Chan-Gi Park;Sung-Ki Park
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.4
    • /
    • pp.261-283
    • /
    • 2023
  • This study aimed to review the performance stability of PET (Polyethylene terephthalate) fiber reinforcing materials among the synthetic fiber types for which the application of performance reinforcing materials to fiber-reinforced concrete is being reviewed by examining short-term and long-term performance changes. To this end, the residual performance was analyzed after exposing the PET fiber to an acid/alkali environment, and the flexural strength and equivalent flexural strength of the PET fiber-reinforced concrete mixture by age were analyzed, and the surface of the PET fiber collected from the concrete specimen was examined using a scanning microscope (SEM). The changes in were analyzed. As a result of the acid/alkali environment exposure test of PET fiber, the strength retention rate was 83.4~96.4% in acidic environment and 42.4~97.9% in alkaline environment. It was confirmed that the strength retention rate of the fiber itself significantly decreased when exposed to high-temperature strong alkali conditions, and the strength retention rate increased in the finished yarn coated with epoxy. In the test results of the flexural strength and equivalent flexural strength of the PET fiber-reinforced concrete mixture, no reduction in flexural strength was found, and the equivalent flexural strength result also did not show any degradation in performance as a fiber reinforcement. Even in the SEM analysis results, no surface damage or cross-sectional change of the PET reinforcing fibers was observed. These results mean that no damage or cross-section reduction of PET reinforcing fibers occurs in cement concrete environments even when fiber-reinforced concrete is exposed to high temperatures in the early stage or depending on age, and the strength of PET fibers decreases in cement concrete environments. The impact is judged to be of no concern. As the flexural strength and equivalent flexural strength according to age were also stably expressed, it could be seen that performance degradation due to hydrolysis, which is a concern due to the use of PET fiber reinforcing materials, did not occur, and it was confirmed that stable residual strength retention characteristics were exhibited.

Studies on the Durability of Mortars (모르타르의 내구성에 관한 연구)

  • 고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.4
    • /
    • pp.1798-1802
    • /
    • 1969
  • The experiment was carried out as one of the basic studies to improve the alkali-resistance of cement mortars and it was conducted to investigate some propetties of mortars relating to weight losses when exposed to 0.1 N salution of sodium hydroxide. The experiment and the results obtained are summarized as follow; 1. The specimens used in this experiment were made of 5 centi-meter cubes of mortar having such various ratios of mix by weight as 1 : 1, 1 : 3, 1 : 5, 1 : 7 and 1 : 10. 2. Physical tests included compressive strengths at 7 days, 28 days, 3 months, and 6 month, and 5 hour boiling absorption test. 3. In alkali test, every specimen was immersed into 0.1 N solutions of sodium hydroxide. The specimens exposed to the alkali solution were weighed to determine the weight losses of the alkail-corroded at one week interval for 7 week's exposure and the old alkali solutions were also changed to fresh solutions when weighed the weight losses by alkali attack at one week interval. 4. According to the alkail test after 7 week's exposure, no weight losses were observed on ratios of mix 1:1 and 1:3 and slight weight losses occurred on ratios of mix 1:5 and 1:7, but relatively large amount of weight losses were showed by 36.6 per-cent on ratios of mix 1:10. It was also found that the weight losses of the alkali-corroded were extremely lower than those of the acid-corroded at the some concentrations as 0.1 N of solutions. 5. In order to make better quality of alkali-resistant mortar it might recomend that a 1:7 mix or richemixes, use of small amount of mixing water for watertight, 20 per cent or less absorption by 5 hour boiling 1,600 kirogram per cubic meters or denser densities by absolute dry base are available for physical properties of mortar. It could conclude acid-resistant mortars were so high alkali-resistant, that it is expected to make and improve the acid-resistant mortars for getting rid of damages by alkali attack.

  • PDF

A Study on Change in Cement Mortar Characteristics under Carbonation Based on Tests for Hydration and Porosity (수화물 및 공극률 관측 실험을 통한 시멘트모르타르의 탄산화 특성 변화에 대한 연구)

  • Kwon, Seung-Jun;Song, Ha-Won;Park, Sang-Soon
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.613-621
    • /
    • 2007
  • Due to the increasing significance of durability, much researches on carbonation, one of the major deterioration phenomena are carried out. However, conventional researches based on fully hardened concrete are focused on prediction of carbonation depth and they sometimes cause errors. In contrast with steel members, behaviors in early-aged concrete such as porosity and hydrates (calcium hydroxide) are very important and may be changed under carbonation process. Because transportation of deteriorating factors is mainly dependent on porosity and saturation, it is desirable to consider these changes in behaviors in early-aged concrete under carbonation for reasonable analysis of durability in long term exposure or combined deterioration. As for porosity, unless the decrease in $CO_2$ diffusion due to change in porosity is considered, the results from the prediction is overestimated. The carbonation depth and characteristics of pore water are mainly determined by amount of calcium hydroxide, and bound chloride content in carbonated concrete is also affected. So Analysis based on test for hydration and porosity is recently carried out for evaluation of carbonation characteristics. In this study, changes in porosity and hydrate $(Ca(OH)_2)$ under carbonation process are performed through the tests. Mercury Intrusion Porosimetry (MIP) for changed porosity, Thermogravimetric Analysis (TGA) for amount of $(Ca(OH)_2)$ are carried out respectively and analysis technique for porosity and hydrates under carbonation is developed utilizing modeling for behavior in early-aged concrete such as multi component hydration heat model (MCHHM) and micro pore structure formation model (MPSFM). The results from developed technique is in reasonable agreement with experimental data, respectively and they are evaluated to be used for analysis of chloride behavior in carbonated concrete.