• Title/Summary/Keyword: Cement Mortar

Search Result 1,478, Processing Time 0.026 seconds

Mechanical properties of the mortar by replacing the fine aggregate in mud flat with cement mortar (시멘트 모르타르에서 잔골재를 갯벌로 대체한 모르타르의 특성)

  • Kang, Yun-Young;Lee, Seul-Bi;Yang, Seong-Hwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.87-88
    • /
    • 2016
  • In the current construction market usage cement and aggregate is increasing continuously. This is progressing serious environmental pollution due to the carbon dioxide generated during cement production. Further, by using a large amount of aggregate, they tend to have even reduced natural resources. As a result, the reduction of carbon dioxide through the United Nations Framework Convention on Climate Change, the energy saving has been positioned as a global trend. Therefore, in this study, instead of fine aggregate fix the cement, by the use to increase the proportion of the tidal flats, to try to reduce the amount of cement and fine aggregate. Accordingly, according to increasing the proportion of the mud flat be analyzed for properties the compressive strength, tensile strength, flow, chloride test, workability of the mortar.

  • PDF

Burn-up Characteristics of Polymer-Modified Cement Mortar Used for Building Repair (고온시에서의 폴리머 시멘트 모르타르의 연소특성에 관한 연구)

  • Kim, Hyung-Jun;Noguchi, Takahumi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.295-298
    • /
    • 2012
  • Repair and strengthening is necessary to extend the service life of existing buildings. Polymer-modified cement mortar (PCM) has been extensively used as a high performance material particularly for finishing and repairing works in concrete building because of itsexcellent adhesion, waterproofing, resistance to chemical attack, and workability. As PCM contains organic polymer, it is necessary to clarify its properties at high temperature under fire, on which sufficient data are not available. This paper evaluated the burn-up characteristics of polymer-modified cement mortar with cone calorimeter test, non-combustibility test and flammability test with experimental parameters such as the types of polymer, unit-polymer content, polymer-cement ratio and thickness of the specimen.

  • PDF

Bond Properties of Structural Poly Vinyl Alcohol Fiber in Cement Based Composites with Metakaolin and Silica Fume Contents (메타카올린 및 실리카퓸 첨가율에 따른 구조용 PVA 섬유와 시멘트 복합재료의 부착특성)

  • Lee, Jung-Woo;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.9-16
    • /
    • 2012
  • In this study, the effect of metakaoline and silica fume on the bond performances of structural polyvinyl alcohol (PVA) fiber in cement mortar, including bond strength, interface toughness, and microstructure analysis are presented. Metakaoline and silica fume contents ranging from 0 % to 15 % are used in the mix proportions. Pullout tests are conducted to measure the bond performance of PVA fiber from cement mortar. Test results showed the incorporation of metakaoline and silica fume can effectively enhance the PVA fiber-cement mortar interfacial properties. Bond strength and interface toughness increased with metakaoline and silica fume content up to 10 % in cement mortar and decreased when the metakaoline and silica fume content reached 15 %. The microstructural observation confirms the findings on the interface bond mechanism drawn from the fiber pullout test results.

Effect of acid-treatment aggregate on compressive strength of cement mortar (산 처리 골재가 시멘트 모르타르의 압축강도에 미치는 영향)

  • Shi, Yixuan;Jang, Indong;Yi, Chongku
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.151-152
    • /
    • 2019
  • This study is aimed at comparing the effect of cement mortar made of sulfuric acid treated ISO standard sand with that of cement mortar made of normal ISO standard sand. In the water absorption test, water absorption of standard sand increases with the increase of immersion time in sulfuric acid solution. The results show that at the water cement ratio of 0.5, the longer the standard sand is immersed in sulfuric acid, the greater the compressive strength of the cement mortar sample.

  • PDF

Characterization of Mortar and Concrete made with Cement containing Fly ash (Fly ash 혼합 시멘트의 몰탈 및 콘크리트 특성 평가)

  • 김창범;박춘근;최상휼;이경희;이승헌
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.196-202
    • /
    • 1997
  • The objective of this study is characterize of Mortar and Concrete mae with Cement made with Cement containing Fly ash as an additive. Cement samples were prepared using tow kinds of Fly ash, which containing unburnt Carbon content 3.5% and 4.5%. Fly ash content in cement was in range 3wt% to 13wt%. In consequence of various experiments, these cement samples satisfied specification of Type I cement, and it is possible to use Fly ash as an additive to Type I cement in this content.

  • PDF

Hardened properties of the cement based Basalt powder sludge mortar for surface preparation (시멘트계 바탕 바름재용 현무암 석분슬러지 모르타르의 경화 특성)

  • Jang, Myung-Houn;Choi, Heebok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.5
    • /
    • pp.451-456
    • /
    • 2015
  • This study aimed to evaluate of the hardened properties (mortar consistency, setting time, absorption properties, drying shrinkage, and bond strength) of the basalt powder sludge mortar recycling a basalt powder sludge occurred during the manufacture process of basalt stone as a replacing material for the sea-sand used to cement filling compound for surface preparation. The hardened mortar made of the basalt powder sludge showed an enhanced performance or similar with the properties of normal mortar used to cement filling compound for surface preparation. But, the drying shrinkage was increased more than a normal cement mortar in the hardened mortar made of the basalt powder sludge since curing 8 - 9days. And the bond strength is low in the hardened mortar used the basalt powder sludge. On the whole, properties of the hardened mortar used the basalt powder sludge correspond to the required minimum quality criterion in the KS F 4716 'cement filling compound for surface preparation'.

The Effect of Dry Environment on Strength of Cement Mortar Immediately after Casting (성형직후 건조환경이 시멘트 모르터의 강도에 미치는 영향)

  • 오무영;김준희
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.2
    • /
    • pp.61-72
    • /
    • 1991
  • This study was carried out to research the strength drop of concrete in dry environment. The mixing ratio of cement-fine aggregate was 1: 1, 1 : 2, 1: 3 and 1 : 4. The curing was compared standard curing with dry curing immediately after casting. It is analysis of strength change by water-proof mixing. The curing age of cement mortar was 3days, 7days, l4days and 28days. The result obtained from this study are summarized as follows. 1. The compressive and bending strength change by increasing the curing age, dry curing mortar the increasing rate of strength was decreased than standard curing mortar. 2. The compressive and bending strength change in early curing, strength difference between standard curing mortar and dry curing motar was gradually closed by increasing the W/C. 3. The dry curing mortar was decreased than standard curing mortar in decreasing rate of compressive and bending strength by increasing the W/C. 4. The compressive strength of water-proof mortar in early curing, liquid water-proof mortar was shown high strength in dry curing than standard curing. The powder and liquid water-proof mortar have a small effect in dry environment. The liquid water-proof mortar was high strength without relation change of curing age in dry environment than standard curing. 5. The compressive strength of liquid water-proof mortar in poverty mix, dry curing was shown high strength than standard curing. 6. The bending strength was increased than compressive strength by decreasing the volume of cement in early curing. The increasing rate of bending strength was decreased to compressive stength by increasing the curing age.

  • PDF

Deciding the Appropriate Combination Ratio for FA and BS in High-Intensity Cement Mortar (고강도 시멘트 모르타르에서 FA 및 BS의 적정조합비율 결정)

  • Kim, Min-Sang;Moon, Byeong-Yong;Jo, Man-Ki;Park, Sung-Bae;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.26-27
    • /
    • 2016
  • This study analyzes the engineering characteristics of mortar according to admixture replacement ratios in cement mortar in a high-intensity ternary system, and changes in FA and BS combination ratios, in order to deduce the optimal combination ratio of FA and BS. Results showed that due to the characteristics of unhardened mortar, flow rate increased with the increase in admixture replacement and FA combination ratios, whereas air quantity decreased and setting time was delayed. Due to the characteristics of light mortar, compression strength decreased at early material ages as the overall combination ratio of FA increased. The FA : BS combination ratio was 2 : 3 on day 28 of material age, proving the best and potentially optimal combination ratio.

  • PDF

Physical and mechanical properties of cement mortar with LLDPE powder and PET fiber wastes

  • Benimam, Samir;Bentchikou, Mohamed;Debieb, Farid;Kenai, Said;Guendouz, Mohamed
    • Advances in concrete construction
    • /
    • v.12 no.6
    • /
    • pp.461-467
    • /
    • 2021
  • Polyethylene-terephthalate (PET) from bottle waste and linear low-density polyethylene (LLDPE) from barrels and tanks waste are widely available and need to be recycled. Recycling them in concrete and mortar is an alternative solution for their disposal. In this study various quantities of sand (5%, 10%, 15% and 20%) were substituted by powder from LLDPE waste. In addition, PET waste fibers (corrugated, straight) were added to the mortar with different percentages (0.5%, 1%, 1.5% and 2%) of cement mass. This paper evaluate the mechanical and physical properties of the composites in fresh (workability, air content and density) and hardened state (compressive and flexural strength, water absorption and total shrinkage). From the experimental results, it can be concluded that the strengthening in tensile of the mortar with plastic waste corrugated fibers is improved. Other important results are that the water absorption and the density rate are less than that of the ordinary mortar.

The Strength of the Portland-Cement Mortar Use of Fly-ash (플라이애쉬를 사용한 시멘트 모르터의 강도에 관한 연구)

  • 서기원;서치호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.04a
    • /
    • pp.19-22
    • /
    • 1991
  • In order to the Utilization of Fly ash, The Properties of cement Mortar use of Fly ash based on Mixing rate, strength of mortar, W/C+F and quantity of Fly ash, Flow value, and unit weight are investigated. So follow result are unit weight of mortar of Fly ash is about 2014 Kg/㎥, Compressive strength of mortar is 50-404 Kg/$\textrm{cm}^2$ and beneficial reference to the utility of domestic Fly ash were obtained.

  • PDF