• Title/Summary/Keyword: Cellulose acetate(CA)

Search Result 63, Processing Time 0.019 seconds

Development of membrane blend using casting technique for water desalination

  • El-Gendi, A.;Ali, S.S.;Ahmed, S.A.;Talaat, H.A.
    • Membrane and Water Treatment
    • /
    • v.3 no.3
    • /
    • pp.201-209
    • /
    • 2012
  • Membrane separation technologies have some of advantages are considered a better alternative to traditional methods. Research of novel membranes is very vital for covering the higher required of membrane in several purposes like water desalting technology. In this work polyamide-6/cellulose acetate (PA-6/CA) blend membrane was developed according to the wet phase inversion system. The structures of the prepared membranes were examined by scanning electron microscopy (SEM). SEM images showed uniform particles distribution in the prepared membranes. Moreover, SEM images revealed that the membranes have relatively uniform surface (PA-6/CA). PA-6/CA blend membranes systems are evaluated by using synthetic NaCl solution. The separation performance showed that salt rejection increased with increasing of heat treatment of the casted films and it was improved with increasing of operating pressure.

A Study on photoisomerization of cellulose acetate containing disperse red 1 (Disperse red 1을 함유하고 있는 셀룰로오스 아세테이트의 광이성화에 관한 연구)

  • Lee, Soo;Park, Keun-Ho;Jung, Dong-Soon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.273-279
    • /
    • 1999
  • In order to study a reversible photoisomerization of disperse red l(DR 1) attached on natural polymers, cellulose acetate containing DR l(DR 1/CA adduct) was prepared, and the changes of UV/VIS spectra of its solution(benzene, DMAc). thick film, and LB film were investigated by alternate irradiation with two different wave length lights. DR 1/CA adduct was prepared through tosylation of partially hydrolyzed cellulose acetate followed by reaction with DR 1 at $100^{\circ}C$ in pyridine. From the UV/VIS spectra of DR 1/CA adduct dissolved in DMAc solvent including phosphoglyceride before and after irradiation at 360nm and 45Onm, we found out the changes of UV/VIS spectra were reversible. In addition, the change of UV/VIS spectra of this adduct solution was strongly depended on the sorts of solvents and temperature. As the temperature was increased, UV/VIS spectra of this adduct solution in DMF showed blue shift. These results provided this solution could be applied to a temperature sensor. In the thick film case, we also obtained similar results with solution case. LB monolayer and trilayer from DR 1/CA adduct was obtained by scattering the solution including phosphoglyceride on water surface at the surface pressure of 8mN/m. After irradiation on that LB monolayer and trilayer, the reversible photoisomerization was also detected. From these results we concluded DR 1/CA adduct was suitable for the application to data storage and optical switch, etc.

Removal of BP-3 Endocrine Disrupting Chemical (EDC) using cellulose acetate and ZnOnano particles mixed matrix membranes

  • Rajesha, B.J.;Chandan, H.R.;Sunil, K.;Padaki, Mahesh;Balakrishna, Geetha R.
    • Membrane and Water Treatment
    • /
    • v.7 no.6
    • /
    • pp.507-520
    • /
    • 2016
  • The effect of ZnO on cellulose acetate in the removal of benzophenone-3 (BP-3) was investigated. The benzophenone-3 (BP-3) which is an endocrine disrupting chemical (EDC) was completely removed (100%) from the drinking water using Cellulose Acetate (CA) and zinc oxide (ZnO) composite membranes. The membranes were prepared by DIPS method and the filtration experiments were conducted by dead end filtration unit. The macrostructure of the membrane were studied by ATR-IR and XRD Spectra's. Atomic force microscopy (AFM) and Scanning electron microscopy (SEM) were used to study the micro properties of the membranes. The laboratory experiments such as water uptake study and pure water flux performed to confirm the increasing hydrophilicity. The enhancing hydrophilicity was confirmed with respect to higher the concentration of nanoparticles. Evaluation of BP-3 removal was carried in different experimental conditions, such as, different Trans membrane pressure and different concentration of feed. The membrane with low pressure showed better performance by rejecting 100% of BP-3. However, 1 ppm, 3 ppm and 6 ppm of feed solution was used and among them 3 ppm of feed solution gives 100% rejection. The ZnO nanoparticales enhances the performance of CA membrane by showing maximum rejection.

Cellulose acetate membrane preparation by phase inversion to estimate optimized parameters and its performance study

  • Katariya, Heena N;Patel, Tejal M
    • Membrane and Water Treatment
    • /
    • v.13 no.3
    • /
    • pp.139-145
    • /
    • 2022
  • Development in advanced separation processes leads to the significant advancement in polymeric membrane preparation methodology. Therefore, present research investigated the preparation and characterization of cellulose acetate membrane by phase inversion separation method to determine optimized operating parameters. Prepared CA membrane's performance was been analyzed in terms of % rejection and flux. Investigation was conducted to study effect of different parameters such as polymer concentration, evaporation rate, thickness of film, coagulation bath properties, temperature of polymer solution and of the coagulation bath etc. CA membrane was fabricated by taking polymer concentration 10wt% and 11wt% with zero second evaporation time and varying film thickness over non-woven polyester fabric. Effect of coagulation bath temperature (CBT) and casting solution temperature were also been studied. The experimental results from SEM showed that the surface morphology had been changed with polymer r concentration, coagulation bath and casting solution temperature, etc. Lower polymer concentration leads to lower precipitation time giving porous membrane. The prepared membrane was tested for advanced waste water treatment of relevant effluent stream in pilot plant to study flux and rejection behavior of the membrane.

Preparation of Cellulose Acetate Membrane and Its Evaluation as a Forward Osmosis Membrane (셀룰로오스 아세테이트 분리막 제조 및 정삼투 성능 평가)

  • Ahn, Hyeryun;Kim, Jinhong;Kwon, Young-Nam
    • Membrane Journal
    • /
    • v.24 no.2
    • /
    • pp.136-141
    • /
    • 2014
  • In this study, cellulose acetate (CA) membrane was prepared by phase inversion precipitation and then evaluated the forward osmosis (FO) membrane performance. Differences in water flux and salt rejection between RO and FO with prepared membranes were observed. The different structure membranes were prepared with various solvent which evaluate the influence of membrane structure on permeability. The structure of the prepared membrane was confirmed through scanning electron microscopy (SEM) and the permeability changes were estimated using the bench-scale FO test equipment.

Milk Concentration by Commerical Tubular Membranes (관형 상용막에 의한 우유 농축)

  • 김인철;김정학;탁태문
    • Membrane Journal
    • /
    • v.9 no.1
    • /
    • pp.17-24
    • /
    • 1999
  • Milk was concentrated by commercial tubular membranes, The permeation rate reduction of hydrophilic membranes (sulfonated poly sulfone (SPSf), polyacrylonitrile (PAN), cellulose acetate (CA)) was found not to be large but hydrophobic membranes to be pronounced considerably, In the case of UF concentration total solids, proteins, fats and minerals were increased as concentrated but carbohydrates decreased. NF showed the same behavior except carbohydrates showing small reduction rate.

  • PDF

Influence of a Glasses Frame Processing on the Properties of Eco-friendly Cellulose Acetate Sheet (친환경 셀룰로오스 아세테이트 판재의 안경테 가공 공정별 물성 특성 연구)

  • Lee, Hae Sung;Lee, Sung Jun;Jung, Sang Won;Kim, Hyun-Chul;Go, Young Jun;Park, Dae Jin;Lee, Se Guen
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • Purpose: For optimizing properties of final glasses frame, the aim of this study is to examine the correlation of processing conditions and properties of cellulose acetate (CA) sheets through the investigation of properties of CA sheets prepared under processing steps. Methods: The properties of CA sheets were investigated in terms of different glasses frame processing conditions, bending process, barrel process, and ultrasonic cleaning process. CA sheets prepared through the sequential processing were examined by various analysis: gloss, mechanical properties, thermal properties. Results: After barrel process, hardness and tensile strength of CA sheet were increased. However, bending strength and impact strength were decreased. It is suggested the CA sheet had became rather stiff state (brittle). Also, in degradation temperature region of plasticizer, about 3% of reduction in plasticizer weight was confirmed upon TGA analysis. Conclusions: Glasses frame process, especially in the barrel process have a profound influence on the properties of CA sheet owing to reduction of total amount of plasticizer.

Preparation and Characterization of Cellulosic Forward Osmosis Membranes (셀룰로오스 계 고분자를 이용한 정삼투막의 제조 및 특성)

  • Jeong, Bo-Reum;Kim, Jong-Hak;Kim, Beom-Sik;Park, Yoo-In;Song, Du-Hyun;Kim, In-Chul
    • Membrane Journal
    • /
    • v.20 no.3
    • /
    • pp.222-227
    • /
    • 2010
  • The purpose of this study is to prepare forward osmosis (FO) membranes using a variety of cellulose-based polymers and to evaluate the performance of difference depending on each of the polymers and additives. Forward osmosis membranes based on cellulose acetate (CA) and cellulose triacetate (CTA) were prepared through phase inversion. The performance of FO membranes developed, such as flux and salt rejection, was compared under the osmotically- and pressure-driven conditions. In CA FO membranes, the execution time of solvent evaporation and membrane annealing induced the change in membrane performance. But the performance of CTA FO membrane was improved by using additives rather than annealing. Moreover, the flux of CTA FO membrane was $4.46\;L/m^2hr$ but that of CA/CTA FO membrane was $8.89\;L/m^2hr$ in FO mode. The CTA FO membrane with blending CA was more efficient to increase FO permeate flow rather than using a single polymer membrane.

Studies on the Polymeric Membranes for Separation(IV) Preparation and Properties of Cellulose Acetaste Membranes for Reverse Osmosis (고분자분리막에 관한 연구(IV) 역삼투용 Cellulose Acetate막의 제조 및 특성)

  • 윤규식;김종호;탁태문
    • Membrane Journal
    • /
    • v.3 no.3
    • /
    • pp.117-125
    • /
    • 1993
  • The CA reverse osmosis membranes were prepared and were studied the effects of parameters in membrane performance. The dope solutions were composed of polymer, formamide, acetone and 2-methoxyethanol. And it was prepared flat type membranes. The membranes were measured flux and rejection. The experimental factors such as polymer concentration, additive type, solvent evporation period, annealing temperture, and applied pressure were changed to investigate the effects of these on the membranes. And the transport parameters were also calculated at reverse osmosis medel for prepared membranes.

  • PDF

The Rheological Properties of Poly(acrylonitrile)/Cellulose Acetate Blend Solutions in N,N-Dimethyl Formamide (폴리아크릴로니트릴/셀룰로오스 아세테이트/N,N-디메틸포름아미드 용액의 유연학적 특성)

  • Park, Seung-Han;Song, In-Kyu;Kim, Byoung-Chul
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.384-388
    • /
    • 2009
  • The rheological properties of poly (acrylonitrile) (PAN) and cellulose acetate (CA) blend solutions in N,N-dimethyl formamide (DMF) were investigated in terms of temperature and blend composition. The solutions exhibited a very characteristic rheological behavior with variation of temperature. 8 wt% solution showed an increase of viscosity and a decrease of loss tangent as temperature was increased over the temperature range of 20 and $60^{\circ}C$. At $20^{\circ}C$ the physical properties of the solutions exhibited dependence on the blend composition. At 40 and $60^{\circ}C$, however, the effects of blend ratio on the physical properties notably diminished. The longer relaxation time at higher temperature indicated that the formation of physical structures resulting from intermolecular interactions was promoted with increasing temperature. The odd rheological responses were further elucidated by measuring of the physical properties of dilute solutions. The intrinsic viscosity of the solutions suggested that the coiled chain dimension was reduced with increasing temperature.