• Title/Summary/Keyword: Cellulose Paper

Search Result 429, Processing Time 0.027 seconds

Chemical Characteristics of Abiotic-Stressed Tobacco Stems for the Utilization of a Non-Wooden Biomass (비목질 재료의 바이오매스화를 위한 환경 스트레스 담배줄기의 화학조성)

  • Kim, Kang-Jae;Hong, Sung-Bum;Eom, Tae-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.1
    • /
    • pp.53-60
    • /
    • 2016
  • Abiotic-stressed tobacco stems as a non-wooden biomass were analyzed for their chemical characteristics. Light-stressed tobacco stems (LST) have a relatively high nitrogen concentration, much more extractive content, and a similar amount of lignin and higher contents of acid sugars than those of Non stressed tobacco (NST). It also has low cellulose crystallinity and a high degree of condensation. Guaiacyl units having a lower molecular weight distribution consist of rich lignin. Tension stressed tobacco (TST) growth differentiation under tensile stress was significantly different between normal tissue and cell walls, with the exception of the slightly higher cellulose crystallinity observed for.

Kinetics of Oil-Proof Agent Adsorption onto Cellulose Fibers

  • Zhu, Hongxiang;Honghu, Zeng;Wang, Shuangfei;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.5
    • /
    • pp.59-65
    • /
    • 2009
  • Adsorption of an oil-proof agent (OPA)onto cellulose fibers during the papermaking process was investigated using UV-Vis spectrophotometry by measuring the OPA concentration decrease in the solution. From the calibration curve, the spectrum were converted to chemical concentrations in solution, from which the amount adsorbed onto the fiber surface could be determined. Thus, it was possible to determine the total amount adsorbed onto the fibers and in solution. Using this approach, we studied the adsorption behavior of the OPA onto the fiber surface and derived its, ${\Gamma}^s_t={\Gamma}^s_{\infty}(1-e^{-k_{\alpha}t})$. The values of the parameters kaand ${\Gamma}^s_{\infty}$ were determined using a mathematic model based on a mass transfer equation. Ultimately, a complete was derived: $Q={\alpha}{\cdot}\sum\limits_{i-1}^m{\pi}d_il_i{\cdot}M_A{\cdot}(1-e^{-k_{\alpha}t})/A_N$.

A Physico-chemical Change of Dissolving Pulp by Dry Milling and Fractionation (건식분쇄와 분급에 의한 용해용 펄프의 특성변화)

  • Kim, Taeyoung;Lee, Songmin;Heo, Yongdae;Kim, Jinyoung;Joung, Yangjin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.5
    • /
    • pp.23-32
    • /
    • 2015
  • In this study, chemical and physical changes of dissolving pulps which have similar viscosity by dry milling and fractionation were investigated. We used two types of dissolving pulp made from wood and cotton linter fiber, respectively. Dry milling was executed by knife cutter and pulp powders were fractionated by sieve shaker into 4 grades. We analyzed fiber properties, crystallinity index, viscosity, molecular weight of pulp sheet and powders. It was found that poly-dispersity index of cotton linter pulp was smaller than that of wood pulp, meaning that cotton pulp has more narrow molecular weight distribution. It was assumed that these were related to exposure times to chemical treatment which cut cellulose chains not evenly. At least 4 times of chemical treatments for wood pulp were executed and only two times of chemical treatments for cotton linter pulp were done. After dry milling average molecular weight and crystallinity index of cotton linter pulp powders were reduced and these were related to fines content and shape of pulp powders.

Manufacturing and Characterization of Red algae fiber/Polypropylene Biocomposites (홍조류섬유보강 폴리프로필렌 바이오복합재료의 제조 및 특성 분석)

  • Lee, Min-Woo;Seo, Yung-Bum;Han, Seong-Ok
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2008.04a
    • /
    • pp.178-182
    • /
    • 2008
  • The bleached red algae fiber(BRAF) showed very similar crystallinity to the cellulose, furthermore, it has higher thermal decomposition temperature than that of the microcrystalline cellulose(MCC). Polypropylene biocomposites reinforced with BRAF have been fabricated with various BRAF contents by compression molding method and their mechanical and thermomechanical properties have been studied. The mechanical strength as tensile, impact and flexural modulus of BRAF/PP biocomposites were gradually improved with increasing the BRAF content, and thermal property which against the thermal expansion was markdly improved, especially. These results are compared with chopped non-woody fibers as Henequen or Kenaf, BRAF was more effective for fabrication of biocomposites reinforced small-sized fibers. The red algae fiber reinforced biocomposites has the applicability such as electronics, biodegradable products and small-structure composites.

  • PDF

Characteristics of the Leaf Fiber Plants Cultivated in Korea (국내 재배 엽맥섬유의 특성에 관한 연구)

  • Lee, Hye-Ja;Kim, Nam-Eun;Yoo, Hye-Ja;Han, Young-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.5
    • /
    • pp.711-720
    • /
    • 2009
  • Leaf fibers have many good properties; they are strong, long, cheap, abundant and bio-degradable. Since they, however, contain a great quantity of non-cellulose components, they have been used for the materials of mats, ropes, bags and nets rather than those of clothing. In this study, we investigated the characteristics of leaf fibers in order to promote the use of leaf fibers for the materials of clothing as well as develop the high value-added textile fibers. Leaf fiber plants including New Zealand Flax, Henequen and Banana plant, which have various nature and shape, were used. New Zealand Flax and Henequen leaves were cut from lower part of plants. Banana leaves and pseudo-stems were peeled and cut from the stem of Banana plants. First, the thin outer skins like film of leaves, veins and stems were removed before retting. The chemical retting had been processed for 1hour, at 100 in 0.4% $H_2SO_4$ aqueous solution(liquid ratio 50:1). Then, the retted leaf fibers had been soaked for 1hour, at room temperature in 0.5% NaClO solution(v/v) to remove the miscellaneous materials. We investigated the physical characteristics of three leaf fibers including the transversal and longitudinal morphology, the contents(%) of pectin, lignin and hemicellulose, the length and diameter of fibers, the tensile strength of the fiber bundles, and the fiber crystallinity and the moisture regain(%). The lengths of fiber from three leaf fibers were similar to their leaf lengths. The fiber bundles were composed of the cellulose paralleled to the fiber axis and the non-cellulose intersecting at right angle with the fiber axis. The diameters of New Zealand Flax, Henequen and Banana fibers were $25.13{\mu}m$, $18.16{\mu}m$ and $14.01{\mu}m$, respectively and their tensile strengths were 19.40 Mpa, 32.16 Mpa and 8.45 Mpa, respective. The non-cellulose contents of three leaf fibers were relatively as high as 40%. If the non-cellulose contents of leaf fibers might be controlled, leaf fibers could be used for the materials of textile fiber, non-wovens and Korean traditional paper, Hanjee.

Characteristics of Galactooligosaccharide Production Using Cellulases (셀룰라제를 이용한 갈락코올리고당의 생산 특성)

  • 신현재;양지원
    • KSBB Journal
    • /
    • v.11 no.3
    • /
    • pp.317-322
    • /
    • 1996
  • Galactooligosaccharlde (GOS) is a kind of functional oligosaccharides that can be used as a food ingredient and a cosmetic additive. In this paper, characteristics of GOS synthesis by cellulase, using lactose as a substrate, were investigated. Penicillium funiculosum cellulose was found to be the most efficient for GOS production among six cellulose tested. The optimum pH and temperature for GOS production were 5.0 and $50^{\circ}C$, respectively. There was an optimum ratio of lactose concentration to enzyme loading; the value was 10 (w/w). The reaction pattern of P. funiculosum cellulase is consistent with that of microbial ${\beta}$-galactosidase which shows transgalactosylation activity. Amounts of GOS produced from 20% (w/v) lactose after 6 h incubation at $50^{\circ}C$, were 23% (w/w) based on total saccharide in the reaction medium. The GOS % increased with initial lactose concentration in the range of 5 to 20%. The products mainly consisted of a trisaccharide and tetrasaccharide from HPLC and TLC analysis. Among enzymes involved in transgalactosylation reaction, high molecular weight fractions over 50,000 Da, presumably ${\beta}$-glucosldase, were considered to be responsible for GOS production. Using this cellulose, a direct synthesis of galactosyl g1ucoside including GOS could be readily achieved with lactose as a galactosyl donor.

  • PDF

Concentration Characteristics of Airborne Hexavalent Chromium in the Industrial Area (산업단지 대기 중 6가 크롬 농도 특성에 관한 연구)

  • Kang, Byung-Wook;Han, Jin-Seok;Lee, Min-Do;Lee, Hak-Sung;Kim, Jong-Ho;Son, Eun-Seong;Baek, Sung-Ok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.3
    • /
    • pp.179-187
    • /
    • 2009
  • This paper describes the field evaluation of a sampling and analytical method for the quantity of airborne hexavalent chromium ($Cr^{6+}$) in the industrial areas, such as Sihwa and Banwol. Ambient measurements were performed by using the cellulose filter during the four seasons (October 2006 to June 2007). The determination of hexavalent chromium was carried out by ion chromatography. Performance validations, including method detection limit, relative standard deviation, and recovery percent, were also investigated. The mean concentrations of $Cr^{6+}$ in Sihwa and Banwol were 0.767 and 0.796 $ng/m^3$, respectively, which are similar to those of other foreign industrial areas. The seasonal variations of $Cr^{6+}$ levels were not quite different, which implies that the chromium was continuously emitted from the industrial sources throughout the year. The concentration variations between total chromium and $Cr^{6+}$ have also shown the similar pattern, suggesting that these components originate from the same sources. The concentration of $Cr^{6+}$ was found to be 0.7 to 2.4% of the total chromium. From these results, the approach using the cellulose filter may be suitable to collect $Cr^{6+}$ in the ambient air.

Effects of Cordyceps militaris Mycelia on In vitro Rumen Microbial Fermentation

  • Yeo, Joon Mo;Lee, Shin Ja;Lee, Sang Min;Shin, Sung Hwan;Lee, Sung Hoon;Ha, Jong K.;Kim, WanYoung;Lee, Sung Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.2
    • /
    • pp.201-205
    • /
    • 2009
  • Effects of Cordyceps militaris mycelia on rumen microbial fermentation were determined by measuring in vitro gas production, cellulose digestion and VFA concentrations. C. militaris mycelia was added to buffered rumen fluid with final concentrations of 0.00, 0.10, 0.15, 0.20, 0.25 and 0.30 g/L and incubation times were for 3, 6, 9, 12, 24, 36, 48 and 72 h. At all incubation times, the gas production showed a quadratic increase with the supplementation of C. militaris mycelia; maximum responses were seen with 0.25 g/L supplementation. However, the gas production was significantly lower for the 0.30 g/L supplementation than for the 0.25 g/L supplementation from 9 h to 72 h incubation. The cellulose filter paper (FP) digestion showed a quadratic increase, as did the gas production except at 3 h incubation. The concentration of total VFA was significantly increased by the supplementation of C. militaris mycelia compared with the control treatment; the highest response was also seen with 0.25 g/L supplementation. This was true for responses in the concentration of acetic and propionic acids. As opposed to other responses, the responses of pH to the supplementation of C. militaris mycelia showed a quadratic decrease from 3 h to 36 h incubation. In conclusion, C. militaris mycelia alter the mixed rumen microbial fermentation with increases in the production of gas and VFA, and cellulose FP digestion.

The Improvement of Wet Strength Properties of Sheet by N-Chlorocarbamoylethylation (N-chlorocarbamoylethyl화에 의한 sheet의 습윤강도 향상효과)

  • Jeong, Myung-Joon;Jo, Byoung-Muk;Oh, Jung-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.63-72
    • /
    • 1999
  • For the purpose of improving the wet strength properties of paper, cellulosic fibers were modified by the processes of carbarmoylethylation and N-chlorocarbamoylethylation. Carbamoylethylated cellulose was prepared by the reaction of acrylamide with cellulosic fibers under the alkali catalyst, and N-chlorocarbamoylethylated cellulose was prepared by the addition of sodium hypochlorite into the carbamoylethylated cellulose. In carbamoylethylation reaction, the conditions of NaOH concentration, temperature and acrylamide addition rate were considered to be important factors. An initial reactivity and degree of substitution(DS) in carbamoylethylation of cellulosic fibers were effective according to increasing the addition rates of alkali, acrylamide and the temperature condition of $40^{\circ}C$. The effective wet strength properties by N-chlorocarbamoylethylation of cellulosic fibers were indicated under the conditions of DS 0.06. The wet strength of sheet was improved to 85% at the 100% basis of dry strength. From the photograph of scanning electron microscopy, fiber cuttings on the edge of sheet sample used in tensile strength testing were found in the N-chlorocarbamoylethylated sheet, due to the improvement of fiber bonding strength. The hypochlorite treatment was effective in the recycling of N-chlorocarbamoylethylated sheet, and was reduced the wet strength of sheet to be able to reslush.

  • PDF

The Dyeing Properties of Cellulose and Protein Fabrics by Yellow Natural Dyes (황색계 천연염료에 의한 셀룰로스, 단백질계 섬유의 염색)

  • Shin, Young-Joon
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.19 no.1
    • /
    • pp.135-145
    • /
    • 2017
  • In order to analysis on color difference of yellow natural dyes, I have dyed cellulose and protein fabrics. The results of experiment have been analysed by wavelength of maximum absorption, amounts of dye uptake, color difference, Hunter's value and Munsell's value. The results from these analyses are as follows : Bud of pagoda tree, Amur cork, and Curcuma showed greenish yellow color, Gardenia Jasminoides showed reddish yellow color. Barberry root showed reddish yellow color with post-mordanting method on cellulose fabric. Moreover, Dupioni silk was dyed in reddish yellow color by Barberry root and Rhubarb. In addition to Chroma index, Gardenia Jasminoides and Curcuma showed clear color overall. However, dyeing rayon and silk by Barberry root, and dyeing silk by Rhubarb showed clear color. Comparing all the results to actual dyed materials, Bud of pagoda tree had small dye uptake, and both ${\Delta}a$ and ${\Delta}b$ value were short which can't recognized the yellow color easily. Dye uptake of Amur cork and Gardenia Jasminoides was small just like Bud of pagoda tree. However, ${\Delta}b$ value order was Gardenia Jasminoides>Amur cork>Bud of pagoda tree. Therefore, Gardenia Jasminoides recognized reddish yellow because of big value of red color and yellow color. In case of Barberry root and Rhubarb which have larger dye uptake, Baberry root recognized yellow color on rayon only, and couldn't recognized yellow color on bleached cotton fabric, ramie, silk, and dupioni silk. Rhubarb recognized yellow color on rayon with pre-mordanting method only, but recognized silk and dupioni silk as brown like color. Moreover, we could not analyze color by dye uptake, Lab, and H(v/c) for Barberry root and Rhubarb. As a result, I think we need to attach color table for the research paper which handled the color of dyeing materials.

  • PDF