References
- Kim, Y. S., Lee, G. H., Lim, J. A., Cha, M. Y., Kim, J. S. and Kim, S. Y., Anatomical characteristics of secondary xylem in overexpression tobacco by ABF-4, Proceeding of 2004 KSWST Conference, 129-132 (2004).
- Cano-Delgado, A., Penfield, S., Smith, C., Catley. M and Bevan M., Reduced cellulose synthesis invokes lignification and defense responses in Arobidopsis thaliana, The Plant Journal, 34(3): 351-362 (2003). https://doi.org/10.1046/j.1365-313X.2003.01729.x
- Foyer, C. H., Descourvieres, P. and Kunert, K. J., Protection against oxygen radicals: an important defense mechanism studied in transgenic plant, Plant Cell & Environment, 17(5): 507-523 (1994). https://doi.org/10.1111/j.1365-3040.1994.tb00146.x
- Kwon, S. Y., Jeong, Y. J., Lee, H. S., Hur, Y. K., Bang, J. W. and Kwak, S. S., A novel oxidative stress-inducible peroxidase promoter from sweet potato: molecular cloning and characterization in transgenic tobacco plants and cultured cells, Plant Molecular Biology, 51(6): 831-838 (2003). https://doi.org/10.1023/A:1023045218815
- Kwon, S. Y., Choi, S. M., Ahn, Y. O., Lee, H. S., Lee, H. B., Park, Y. M. and Kwak, S. S., Enhanced stress-tolerance of transgenic tobacco plants expressing a human dehydroascorbate reductase gene, J. Plant Physiology, 160(4): 347-353 (2003). https://doi.org/10.1078/0176-1617-00926
- Oberschall, A., Deak, M., Torok, K., Saa, L., Vass, I., Kovacs, I., Feher, A., Dudits, D. and Horvath, G. V., A novel aldose/aldehyde reductase protects transgenic plants against lipid peroxidation under chemical and drought stresses, Plant Journal, 24(4): 437-446 (2000). https://doi.org/10.1046/j.1365-313x.2000.00885.x
- Kim, B. N., Yoon, K. D., Kim, Y. S., and Eom, T. J., Chemical compositions of cell wall in tomato stem by salinity stress, Proceeding of 2006 KSWST Conference, 28-29 (2006)
- Munns, R. and Tester, M., Mechanisms of salinity tolerance, Annual reviews Plant Biology, 59: 651-681 (2008). https://doi.org/10.1146/annurev.arplant.59.032607.092911
- Kim, K. J. and Eom, T. J., Chemical characteristics of cell wall in Pinus thunbergii Parl. grown with high salinity, J. Korea TAPPI, 47(4): 143-149 (2015).
- Schultz, T. P. and Templeton, M. C., Proposed mechanism for the nitrobenzene oxidation of lignin, Holzforschung, 40(2): 93-97 (1986). https://doi.org/10.1515/hfsg.1986.40.2.93
- Stedman, R. L., Chemical composition of tobacco and tobacco smoke, Chem. Rev., 68(2): 153-207 (1968). https://doi.org/10.1021/cr60252a002
- Jarvis, M. C. and McCann, M. C., Marcromolecular biophysics of the plant cell wall: concepts and methodology, Plant Physiol. Biochem., 38(1-2): 1-13 (2000). https://doi.org/10.1016/S0981-9428(00)00172-8
- Frnake, R., McMichael, C. M., Meyer, K., Shirley, A. M., Cusumano, J. C. and Chapple, C., Modified lignin in tobacco and poplar plants over-expressing the Arabidopsis gene encoding ferulate 5-hydroxylase, The Plant Journal, 22(3): 223-234 (2000). https://doi.org/10.1046/j.1365-313x.2000.00727.x
- Uchiyama, T., Sato, J. and Ogasawara, N., Lignification and qualitative changes of phenolic compounds in rice callus tissues inoculated with plant pathogenic fungi, Agricultural and Biological Chemistry, 47(1): 1-10 (1983). https://doi.org/10.1271/bbb1961.47.1