• Title/Summary/Keyword: Cellulase complex

Search Result 54, Processing Time 0.027 seconds

Characterization of an Extracellular Cellulose-Hydrolyzing Enzyme Complex from a Thermotolerant Strain of Aspergillus sp.

  • Lusta, Konstantin A.;Chung, Il-Kyung;Sul, Ill-Whan;Park, Hee-Sung;Shin, Dong-Ill
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.873-876
    • /
    • 1999
  • Aspergillus sp. CX-l strain grown on microcrystalline cellulose resulted in the accumulation of high levels of cellulase and xylanase activities that were higher by two to four folds than those from the conventional commercial producer, Trichoderma reesei QM9414. Aspergillus sp. CX-1 demonstrated greater thermo stability and better catalytic characteristics of total cellulase activity (FPase) as compared to T. reesei and Aspergillus niger F-2039.

  • PDF

Isolation and Characterization of a Novel Aspergillus tubingensis with a Hydrolyzing Activity of Cellulose-pectin Complex (섬유소-펙틴 분해력이 있는 새로운 Aspergillus tubingensis의 분리와 특성 규명)

  • 김영민;서원숙;홍진영;최홍서;김주환
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.2
    • /
    • pp.124-128
    • /
    • 2003
  • In order to isolate and characterize a novel fungal strain capable of producing cellulase, each samples of the old rice straw, soil, and the old tree were screened by congo red test. One of the fungi screened has been identified as Aspergillus tubingensis strain from the results of the phylogenic analysis based on partial DNA sequence and the basis of its biochemical properties. A carboxymethyl cellulase activity of the strain was higher than that of A. oryzae KCTC 6291. In CMCase activity measurement, it wasn't sensitive about pH 2.0, 3.0, 4.0, but the enzyme was more stable than A. oryzae under the various pH and temperature conditions and the enzyme activity was more similar to neutrality and alkali. Therefore, it could be suggested that the isolated strain has a potential possibility for the developing of the probiotics.

Cytochemical and Immunocytochemical Study on the Cellulase Activity in the Digestive Tract of the Land Snail Nesiohelix (동양달팽이 Nesiohelix samarangae 소화관에서의 cellulase 활성에 대한 세포화학적 및 면역세포화학적 연구)

  • 정계헌;이용석;김은정
    • The Korean Journal of Malacology
    • /
    • v.14 no.2
    • /
    • pp.149-159
    • /
    • 1998
  • In order to observe the anticellulolytic localization in the epithelia of the digestive tract such as esophagus, crop, and intestine of a Korean land snail N. samarangae, a cytochemical method and a immunogold labelling method were applied. For the cytochemical study on the cellulase activity, Benedict reaction method applied. And for the immunocytochemical study, the rabbit serum immunoglobuins (IgG) was obtained from the rabbits injected with cellulase which was extracted from body fluid of the snail. The digestive tract tissues of N. samarangae were fixed with 4% paraformaldehyde and 2% OsO4 and embedded in Lowicryl K4M at -40$^{\circ}C$ under UV light (360 nm). The thin sections were loaded on the nickel grids and stained with the serum IgG and protein A-gold complex (particle size: 10 nm). Observations were undertaken with transmission electron microscope (Jeol, JEM-1010). The epithelium of the digestive tract was consisted of five types of cells. In the cytochemical study, the reaction products were found along the periphery of the vacuoles derived from the Bebedict reaction. In the immunocytochemical study, the protein-A gold particles were selectively labelled in Type 1, Type 3 and Type 4 cells in intestinal tissue. membranes of rER, in the surrounding cytoplasm of the rER and secretory granules, and in the apical cytoplasm of the cells. On the material being secreted from the apical cytoplasm was also labelled with the immunogold particles. The all results obtained throughtout present study suggest that the intestinal epithelium of the snail N. samarangae seretes cellulase as one of digestive enzymes.

  • PDF

Molecular Dynamics Simulation of Enantioselectivity in Metoprolol in complex

  • Jang, Seok-Young;Park, Kyung-Lae
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.356.3-357
    • /
    • 2002
  • Metoprolol (MT) is one kinds of adrenergic beta-blockers. Its (S)-enantiomer is known to be more active than the (R). Recently. the x-ray structure of beta-blocker. (S)-propranolol (a-naphthyl analogue), complexed in a mould fungal cellulase. Cel7A. was reported and the (R)-form did not build any complex. And in our previous study the conformation and stability of MT in carboxymethylated beta-cyclodextrin (BCD) complex was determined by NMR. HPLC, UV and electrophoresis measurement. (omitted)

  • PDF

Physicochemical and Sensory Properties of Red Pepper Extract treated with Enzyme Complex (복합효소를 이용한 고추 추출액의 이화학적 및 관능적 특성)

  • Lee, Jong-Yeol;Choi, Gu-Hee;Lee, Kyung-Haeng
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.4
    • /
    • pp.628-634
    • /
    • 2015
  • The ground red pepper puree was treated with cellulase (C treatment), pectinase (P treatment), amylase (A treatment) and/or enzyme complex (CP, CA, PA and CPA treatment) for 2~8 hours to improve the yield and bioactivity of extracts. And physicochemical and sensory properties of red pepper extracts were evaluated. The extraction yield of the control was 38.84%, which was lower than those of the enzyme treatments. And extraction yields of enzyme complex treatments were higher than that of single enzyme treatments. Especially, extraction yield was increased to 74.37% by cellulase + pectinase + amylase complex treatment (CPA treatment). The soluble solid and reducing sugar contents were higher in the extracts treated with enzymes compared with the control. CA and CPA treatment showed the highest soluble solid and reducing sugar contents. No significant changes in lightness, redness and yellowness of the control and the samples by enzyme treatments were observed during 2~8 hours experiments. The sensory evaluation results revealed that panelists preferred the extracts with enzyme treatments to the control. Therefore, enzyme treatment for red pepper extracts is a good method to improve the yield and sensory properties.

Studies on Fermentation Conditions for-Cellulolytic enzymes Production using Trichoderma viride

  • 김종민;유두영
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1977.10a
    • /
    • pp.197.4-197
    • /
    • 1977
  • Efficient utilization of cellulosic material as renewable resources is drawing an increasing degree of attention in the scientific community. As part of our endeavor to improve the production of cellulase complex system, several factors that influence production of cellulolytic enzyme system have been studied.

  • PDF

In Vitro Antagonistic Activity Evaluation of Lactic Acid Bacteria (LAB) Combined with Cellulase Enzyme Against Campylobacter jejuni Growth in Co-Culture

  • Dubois-Dauphin, Robin;Sabrina, Vandeplas;Isabelle, Didderen;Christopher, Marcq;Andre, Thewis;Philippe, Thonart
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.1
    • /
    • pp.62-70
    • /
    • 2011
  • The antibacterial effects of nine lactic acid bacteria (LAB) against Campylobacter jejuni were investigated by using agar gel diffusion and co-culture assays. Some differences were recorded between the inhibition effects measured with these two methods. Only two LAB, Lb. pentosus CWBI B78 and E. faecium THT, exhibited a clear anti- Campylobacter activity in co-culture assay with dehydrated poultry excreta mixed with ground straw (DPE/GS) as the only growth substrate source. It was observed that the supplementation of such medium with a cellulase A complex (Beldem S.A.) enhanced the antimicrobial effect of both LAB strains. The co-culture medium acidification and the C. jejuni were positively correlated with the cellulase A concentration. The antibacterial effect was characterized by the lactic acid production from the homofermentative E. faecium THT and the lactic and acetic acids production from the heterofermentative Lb. pentosus CWBI B78. The antagonistic properties of LAB strains and enzyme combination could be used in strategies aiming at the reduction of Campylobacter prevalence in the poultry production chain and consequently the risk of human infection.

Cloning of Thermophilic Alkalophilic Bacillas sp. F204 Cellulase Gene and Its Expression in Escherichia coli and Bacillus subtilis (고온 알칼리성 Bacillus sp. F204의 Cellulase 유전자의 Escherichia coli 및 Bacillus subtilis에의 Cloning 및 발현)

  • Chung, Young-Chul;Kim, Yang-Woo;Kang, Shin-Kwon;Rho, Jong-Su;Park, Jae-Hyeon;Sung, Nack-Kie
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.31-36
    • /
    • 1991
  • Cellulase genes from thermophilic alkalophilic Bacillus sp. F204 a potent cellulase complex-producing bacterium, were cloned in Escherichia coli with pUC 19. Plasmids pBC191 and pBC192, isolated from transformants forming yellow zone around colony on the LB agar plate containing 0.5% carboxymethyl cellulose and ampicillin, contained 4.6 Kb and 5.8 Kb HindIII fragments, respectively. The 4.6 Kb insert of pBC191 had single sites for BamHI EcoRI, KpnI and pvuII. DNA hybridization and immunodiffusion studies showed that pBC191-encoded cellulase gene was homologous with that of host strain. pKC231, constructed by inserting 4.6 Kb insert of pBC191 at the HindIII site of pKK223-3, E. coli expression vector, and pGC711, constructed by inserting 4.6 Kb insert of pBC191 at the HindIII site of pGR71, E. coli and B. subtilis shuttle vector, had 3.2 times and 2.8 times as much cellulase activity as pBC191, respectively. Substrate specificity analysis showed that cellulases cloned were CMCase.

  • PDF

Double Labeling of Binding Sites in Cellulosic Substrates Using Endo- and Exoglucanase-Gold Complexes

  • Bae Hyeun-Jong
    • Plant Resources
    • /
    • v.8 no.3
    • /
    • pp.175-180
    • /
    • 2005
  • Thin sections of cellulose fibers were incubated with an endo- and an exoglucanase labeled with gold particles of differing sizes. The hydrolytic sites were then visualized under transmission electron microscopy (TEM). The potential interaction between the ${\beta}$-1, 4-glucan substrates and the endo- and the exoglucanases was investigated using cellulosic and lignocellulosic substrates. The simultaneous visualization was very successful in distinguishing preferred substrates for each cellulase in lignocellulosic substrates. When plant lignocellulose was preincubated with endocellulase, density of the gold labeling greatly increased suggesting that preliminary exposure of lignocellulosic material to endocellulase may have enhanced the accessibility of the substrate to endocellulase and exocellulase. This result provided a plausible explanation for the observed endo/exo cellulase co-hydrolysis.

  • PDF

Studies on the Characterization of Cellulase Produced by Trichoderma viride QM 9414 (Trichoderma viride QM 9414가 생산하는 Cellulase 특성에 관한 연구)

  • 윤은숙;이혜정
    • The Korean Journal of Food And Nutrition
    • /
    • v.3 no.1
    • /
    • pp.57-68
    • /
    • 1990
  • In order to obtain the fundamental informations on cellulase of Trichoderma viride QM 9414 for its production and utilization, some physico-chemical properties of the enzyme were reviewed. When T. viride QM 9414 was cultured on wheat bran medium, filter paper-disintegrating and carboxymethyl cellulose-saccharifying activity were increased with the cell growth, and thereafter CMC-saccharifying activity was kept on almost the same leved while filter-paper disintegrating activity was decreased sharply. And B-glucosidase was formed maximally on the late stationary phase of growth. The crude cellulase of cell-free extracts was purified by (NH4)2SO4 fractionation, Sephadex-G 200 column chromatography and DEAE Sephadex A-50 column chromatography. Filter paper-disintegrating, CMC-saccharifying and B-glucosidase activity were purified 10-fold, 47-fold and 38-fold, respectively. The crude enzyme was proved to be a complex of three different enzyme proteins which were showing filter paper-disintegrating, CMC-saccharifying and B-glucosidase activity. The optimal pH of the three enzyme components was alike pH 4.0, and the optimal temperature for CMC-saccharifying, filter paper-disintegrating and B-glucosidase activity were 4$0^{\circ}C$, 45$^{\circ}C$ and 5$0^{\circ}C$ respectively. The Km and Vmax values of CMC saccharifying activity for CMC were 0.485% and 3.10, and the Km and Vmax vallues of B-glucosidase for PNPG were 0.944$\times$10-3M and 0.097, respectively. The Km and Vmax values of filter paper-disintegrating activity for Avicel were determined to be 0.09% and 0.178, respectively. B-Glucosidase activity was competitively inhibited by glucose, and the Ki value for this enzyme was 3.54$\times$10-3M, CMC saccharifying activity was found to be greatly inhibited by cellobiose.

  • PDF