• Title/Summary/Keyword: Cellular toxicity

Search Result 381, Processing Time 0.028 seconds

Microbial 2-Cys Peroxiredoxins: Insights into Their Complex Physiological Roles

  • Toledano, Michel B.;Huang, Bo
    • Molecules and Cells
    • /
    • v.39 no.1
    • /
    • pp.31-39
    • /
    • 2016
  • The peroxiredoxins (Prxs) constitute a very large and highly conserved family of thiol-based peroxidases that has been discovered only very recently. We consider here these enzymes through the angle of their discovery, and of some features of their molecular and physiological functions, focusing on complex phenotypes of the gene mutations of the 2-Cys Prxs subtype in yeast. As scavengers of the low levels of $H_2O_2$ and as $H_2O_2$ receptors and transducers, 2-Cys Prxs have been highly instrumental to understand the biological impact of $H_2O_2$, and in particular its signaling function. 2-Cys Prxs can also become potent chaperone holdases, and unveiling the in vivo relevance of this function, which is still not established, should further increase our knowledge of the biological impact and toxicity of $H_2O_2$. The diverse molecular functions of 2-Cys Prx explain the often-hard task of relating them to peroxiredoxin genes phenotypes, which underscores the pleiotropic physiological role of these enzymes and complex biologic impact of $H_2O_2$.

Transient receptor potential melastatin type 7 channels are involved in zinc-induced apoptosis in gastric cancer

  • Kim, Byung-Joo
    • Animal cells and systems
    • /
    • v.15 no.2
    • /
    • pp.123-130
    • /
    • 2011
  • Transient receptor potential melastatin 7 (TRPM7) channels are novel $Ca^{2+}$-permeable non-selective cation channels that are ubiquitously expressed. Activation of TRPM7 channels has been shown to be involved in the survival of gastric cancer cells. Here we show evidence suggesting that TRPM7 channels play an important role in $Zn^{2+}$- mediated cellular injury. Using a combination of electrophysiology, pharmacological analysis, small interfering RNA (siRNA) methods and cell death assays, we showed that activation of TRPM7 channels augmented $Zn^{2+}$-induced apoptosis of AGS cells, the most common human gastric adenocarcinoma cell line. The $Zn^{2+}$-mediated cytotoxicity was inhibited by the non-specific TRPM7 blockers $Gd^{3+}$ or 2 aminoethoxydiphenyl borate (2-APB) and TRPM7 specific siRNA. In addition, we showed that overexpression of TRPM7 channels in HEK293 cells increased $Zn^{2+}$- induced cell injury. Thus, TRPM7 channels may represent a novel target for physiological disorders where $Zn^{2+}$ toxicity plays an important role.

`oxicological study of carbaryl in rats

  • Lee, Wan-Koo;Hong, Sa-Uk
    • Archives of Pharmacal Research
    • /
    • v.8 no.3
    • /
    • pp.119-132
    • /
    • 1985
  • The apparent effectiveness of 1-naphthyl-N-methyl carbamate (carbaryl) against a wide variety of insects motivated the study of its mammalian toxicity. In this toxicological study of carbaryl, mature male rats inhaled carbaryl at a mean concentration of 112mg, 168mg and 224 mg/$m^{3}$ for one hour. After inhalation, pentobarbital sleeping time, Nadph-cytochrome c reductase activity, cytochrome p-450 and protein content in liver microsomes, various tissue residues, cholinesterase inhibition in plasma and histopathological findings at autopsy were observed. The pentobarbital sleeping time was prolonged in rats inhaled with carbaryl for one day while the sleeping time was shortened in the 3 days inhaled group. The changes of cytochrome p-450 content and NADPH-cytochrome c reductase activity exhibited biphasic response showing the decrease in the one day inhaled group and the increase in the 3 days inhaled group. The marked depression of plasma ChE activity was observed in rats inhaled with carbaryl at 112 mg/$m^{3}$, however no more progressive effect was observed at the higher concentration of the compound. The main observations in histopathological finding were ciliary detachment, epithelial swelling and subepithelial inflammatory cellular infiltration in trachea due to the irritation.

  • PDF

Fumonisin B1-Induced Toxicity Was Not Exacerbated in Glutathione Peroxidase-1/Catalase Double Knock Out Mice

  • Yayeh, Taddesse;Jeong, Ha Ram;Park, Yoon Soo;Moon, Sohyeon;Sur, Bongjun;Yoo, Hwan-Soo;Oh, Seikwan
    • Biomolecules & Therapeutics
    • /
    • v.29 no.1
    • /
    • pp.52-57
    • /
    • 2021
  • Fumonisin B1 (FB1) structurally resembles sphingolipids and interferes with their metabolism leading to sphingolipid dysregulation. We questioned if FB1 could exacerbate liver or kidney toxicities in glutathione peroxidase 1 (Gpx1) and catalase (Cat) knockout mice. While higher serum levels of thiobarbituric acid reactive substances (TBARS) and sphinganine (Sa) were measured in Gpx1/Cat knockout mice (Gpx1/Cat KO) than wild type mice after 5 days of FB1 treatment, serum levels of alanine aminotransferase (ALT), sphingosine-1 phosphate (So-1-P), and sphinganine-1 phosphate (Sa-1-P) were found to be relatively low. Although Sa was highly elevated in Gpx1/Cat KO mice and wild mice, lower levels of So and Sa were found in both the kidney and liver tissues of Gpx/Cat KO mice than wild type mice after FB1 treatment. Paradoxically, FB1-induced cellular apoptosis and necrosis were hastened under oxidative stress in Gpx1/Cat KO mice.

A Study on the Tyrosinase Inhibitory and Antioxidant Effect of Microalgae Extracts

  • Ji, Keunho;Kim, Yeeun;Kim, Young Tae
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.2
    • /
    • pp.167-173
    • /
    • 2021
  • Reactive oxygen species (ROS) disrupt the cellular redox balance, exert cytotoxic effects, and consequently promote the development of various diseases in humans. Previous studies have reported that antioxidants counteract the adverse effects of ROS. Several studies examine the whitening effects of various agents based on their ability to inhibit tyrosinase activity. Tyrosinase is a critical enzyme involved in the synthesis of melanin, which protects the skin against radiation. Various agents exhibiting antioxidant and tyrosinase inhibitory activities have been synthesized. However, these synthetic drugs are associated with toxicity, decreased safety, and poor skin penetration in vivo, which has limited the clinical application of synthetic drugs. This study examined the antioxidant and tyrosinase inhibitory activities of some microalgae. The methanol, dichloromethane, and ethyl acetate extracts of four microalgal species (Tetraselmis tetrathele, Dunaliella tertiolecta, Platymonas sp., and Chaetoceros simplex) were prepared. The physiological and whitening effects of microalgal extracts were investigated by measuring the antioxidant and tyrosinase inhibitory activities. The ethyl acetate extract of D. tertiolecta exhibited the highest antioxidant and tyrosinase inhibitory activities. Future studies must focus on examining the whitening effects of microalgae on cell lines to facilitate the development of microalga-based therapeutics for skin diseases, functional health foods, and whitening agents. Thus, microalgae have potential applications in the pharmaceutical, food, and cosmetic industries.

Whitening and Anti-oxidative Activities of Chemical Components Extracted from Branches of Sorbus alnifolia

  • Bo Shi Liu;Jung Eun Kim;Nam Ho Lee
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.2
    • /
    • pp.137-144
    • /
    • 2023
  • In this study were evaluated the whitening and anti-oxidative activities from the extracts of Sorbus alnifolia branches, and identified the chemical structures of the active ingredients. In the whitening tests using α-MSH stimulated B16F10 melanoma cells, the 70% ethanol extract and n-butanol (n-BuOH) fractions concentration-dependently inhibited cellular melanogenesis and intracellular tyrosinase activities without causing cell toxicity. The total polyphenol content of n-BuOH and ethyl acetate (EtOAc) fractions were measured to be respectively 241.1 ± 1.1 and 222.9 ± 2.4 (mg/g GAE), and the total flavonoid content of EtOAc fraction was 75.3 ± 2.0 (mg/g QE). Upon anti-oxidant studies with DPPH and ABTS+ radicals, potent radical scavenging activities were observed in the EtOAc and n-BuOH fractions. Moreover, in the study of cell protection efficacy using HaCaT keratinocytes damaged by H2O2, the EtOAc and n-BuOH fractions showed a very positive results on prevention of oxidative stress. Phytochemical studies for this extract resulted in the isolation of four compounds; 2-oxopomolic acid (1), euscaphic acid (2), epi-catechin (3), prunasin (4). These results suggested that the extract of S. alnifolia branches containing compounds 1-4 as natural ingredients could be used as whitening and anti-oxidant ingredients in cosmetic formulations.

Up-regulation of Heme Oxygenase-1 Expression by cAMP-elevating Agents in RAW 264.7 cells

  • Ko, Young-Shin;Park, Min-Kyu;Kang, Young-Jin;Lee, Young-Soo;Seo, Han-Geuk;Lee, Duck-Hyung;Yunchoi, Hye-Sook;Chong, Won-Seog;Chang, Ki-Churl
    • Biomolecules & Therapeutics
    • /
    • v.10 no.2
    • /
    • pp.71-77
    • /
    • 2002
  • Heme oxygenase-1 (HO-1) is the inducible from of the rate-limiting enzyme of heme degradation; it regulates the cellular contents of heme. HO-1 is up-regulated by various stimuli including oxidative stress so that it is thought to participate in general cellular defense mechanisms against oxidative stress in mammalian cells. To investigate the role of the cAMP-dependent protein kinase A (PKA) signaling pathway on nitrogen oxidative stress-induced HO-1 gene expression, RAW 264.7 cell cultures were treated with sodium nitroprusside (SNP). SNP increased the expression of HO-1 mRNA and protein, time- and concentration-dependently. Treatment with H89, PKA inhibitor, but not LY83583, guanylate cyclase inhibitor, significantly diminished the HO-1 expression by SNP, indicating that cAMP plays a crucial role in the induction of HO-1. Incubation with cAMP-elevating agents, such as forskolin or isoproterenol resulted in up-regulation of the expression of HO-1. Forskolin-induced expression of HO-1 was inhibited by H89. Furthermore, propranolol, $\beta$-adrenoceptor blocker, inhibited the isoproterenol-induced HO-1 expression, supporting the importance of cAMP in the induction of HO-1 expression. Higenamine-S, but not higenamineR, enhanced the HO-1 expression induced by SNP. Furthermore, cellular toxicity induced by hydrogen peroxide was attenuated by the presence of SNP, which was further increased by the presence of ZnPPIX, HO-1 inhibitor. Collectively, these results strongly suggest that up-regulation of HO-1 expression in RAW 264.7 cells involves PKA signal pathway.

Effect of Verapamil on Cellular Uptake of Tc-99m MIBI and Tetrofosmin on Several Cancer Cells (수종의 암세포에서 Verapamil이 Tc-99m MIBI와 Tetrofosmin의 섭취에 미치는 영향)

  • Kim, Dae-Hyun;Yoo, Jung-Ah;Suh, Myung-Rang;Bae, Jin-Ho;Jeong, Shin-Young;Ahn, Byeong-Cheol;Lee, Kyu-Bo;Lee, Jae-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.1
    • /
    • pp.85-98
    • /
    • 2004
  • Purpose: Cellular uptake of $^{99}mTc$-sestamibi (MIBI) and $^{99}mTc$-tetrofosmin (TF) is low in cancer cells expressing multidrug resistance(MDR) by p-glycoprotein(Pgp) or multidrug related protein(MRP). Verapamil is known to increase cellular uptake of MIBI in MDR cancer cells, but is recently reported to have different effects on tracer uptake in certain cancer cells. This study was prepared to evaluate effects of verapamil on cellular uptake of MIBI and TF in several cancer cells. Materials and Methods: Celluar uptakes of Tc-99m MIBI and TF were measured in erythroleukermia K562 cell, breast cancer MCF7 cell, and human ovarian cancer SK-OV-3 cells, and data were compared with those of doxorubicin-resistant K562(Ad) cells. RT-PCR and Western blot analysis were used for the detection of mdr1 mRNA and Pgp expression, and to observe changes in isotypes of PKC enzyme. Effects of verapamil on MIBI and TF uptake were evaluated at different concentrations upto $200{\mu}M\;at\;1{\times}10^6\;cells/ml\;at\;37^{\circ}C$. Radioactivity in supernatant and pellet was measured with gamma counter to calculate cellular uptake ratio. Toxicity of verapamil was measured with MTT assay. Results: Cellular uptakes of MIBI and TF were increased by time in four cancer cells studied. Co-incubation with verapamil resulted in an increase in uptake of MIBI and TF in K562(Adr) cell at a concentration of $100{\mu}M$ and the maximal increase at $50{\mu}M$ was 10-times to baseline. In contrast, uptakes of MIBI and TF in K562, MCF7, SK-OV3 cells were decreased with verapamil treatment at a concentration over $1{\mu}M$. With a concentration of $200{\mu}M$ verapamil, MIBI and TF uptakes un K562 cells were decreased to 1.5 % and 2.7% of those without verapamil, respectively. Cellular uptakes of MIBI and TF in MCF7 and SK-OV-3 cells were not changed with $10{\mu}M$, but were also decreased with verapamil higher than $10{\mu}M$, resulting 40% and 5% of baseline at $50{\mu}M$. MTT assay of four cells revealed that K562, MCF7, SK-OV3 were not damaged with verapamil at $200{\mu}M$. Conclusion: Although verapamil increases uptake of MIBI and TF in MDR cancer cells, cellular uptakes were further decreased with verapamil in certain cancer cells, which is not related to cytotoxicity of drug. These results suggest that cellular uptakes of both tracers might differ among different cells, and interpretation of changes in tracer uptake with verapamil in vitro should be different when different cell lines are used.

Oxygen Toxicity of Superoxide Dismutase-Deficient Saccharomyces cerevisiae by Paraquat (Paraquat에 의해 유도된 Superoxide Dismutase 결핍 효모의 산소 독성)

  • 김지면;남두현용철순허근
    • KSBB Journal
    • /
    • v.10 no.5
    • /
    • pp.561-567
    • /
    • 1995
  • Using superoxide dismutase (SOD)-deficient mutants of Saccharomyces cerevisiae, the oxygen toxicity induced by paraquat was studied. In aerobic culture condition, yeasts lacking MnSOD (milochondrial SOD) showed more significant growth retardation than CuZnSOD (cytoplasmic SOD)-deficient yeasts. However, not so big differences in growth pattern of those mutants compared with wild type were observed under anaerobic condition. When exposed to paraquat, the growth of yeasts lacking CuZnSOD was severely affected by higher than 0.01mM of paraquat in culture medium. By the analysis of several cellular components ivolved in free radical generating and scavenging system, it was found that, under aerobic condition, the content of lipid peroxides in cell membrane as well as cellular activity of glutathion peroxidase of CuZnSOD-deficient mutants was increased in the presence of paraquat, although significant decrease of catalase activity was observed in those stratns. In MnSOD-deficient yeast, however, increment in cellular activity of glutathion peroxldase and catalase by paraquat was observed without any deterioration of membrane lipid. It implies that the lack of mitochondrial SOD could be compensated by both of glutathion peroxldase and catalase, but that only glutathion peroxidase might act for CuZnSOD in cytoplasm. In contrast, all of SOD-deficient mutants showed a significant decrease in catalase activity, but slight increase in the activities of glutathion peroxidase, when cultivated anaerobically in the medium containing paraquat. Nevertheless, any significant changes of lipid peroxides in cell membranes were not observed during anaerobic cultivation of SOD-deficient mutants. It suggests that a little amount of free radicals generated by paraquat under anaerobic condition could be sufficiently overcome by glutathion peroxidase but not by catalase.

  • PDF

Effects of Several Cosmetic Preservatives on ROS-Dependent Apoptosis of Rat Neural Progenitor Cells

  • Ryu, Onjeon;Park, Bo Kyung;Bang, Minji;Cho, Kyu Suk;Lee, Sung Hoon;Gonzales, Edson Luck T.;Yang, Sung Min;Kim, Seonmin;Eun, Pyeong Hwa;Lee, Joo Young;Kim, Kyu-Bong;Shin, Chan Young;Kwon, Kyoung Ja
    • Biomolecules & Therapeutics
    • /
    • v.26 no.6
    • /
    • pp.608-615
    • /
    • 2018
  • Benzalkonium chloride, diazolidinyl urea, and imidazolidinyl urea are commonly used preservatives in cosmetics. Recent reports suggested that these compounds may have cellular and systemic toxicity in high concentration. In addition, diazolidinyl urea and imidazolidinyl urea are known formaldehyde (FA) releasers, raising concerns for these cosmetic preservatives. In this study, we investigated the effects of benzalkonium chloride, diazolidinyl urea, and imidazolidinyl urea on ROS-dependent apoptosis of rat neural progenitor cells (NPCs) in vitro. Cells were isolated and cultured from embryonic day 14 rat cortices. Cultured cells were treated with 1-1,000 nM benzalkonium chloride, and $1-50{\mu}M$ diazolidinyl urea or imidazolidinyl urea at various time points to measure the reactive oxygen species (ROS). PI staining, MTT assay, and live-cell imaging were used for cell viability measurements. Western blot was carried out for cleaved caspase-3 and cleaved caspase-8 as apoptotic protein markers. In rat NPCs, ROS production and cleaved caspase-8 expression were increased while the cell viability was decreased in high concentrations of these substances. These results suggest that several cosmetic preservatives at high concentrations can induce neural toxicity in rat brains through ROS induction and apoptosis.