• Title/Summary/Keyword: Cellular protective effect

Search Result 341, Processing Time 0.027 seconds

The Effect of Kamihaengche-tang Plus Yukmijihwang-tangon Oxidant and Hg-induced Rabbit's Liver Cell Injury (가미행체탕 합 육미지황탕이 Oxidant 및 Hg에 의한 가토 간세포손상에 미치는 영향)

  • 이수행;김원길;김우환
    • The Journal of Korean Medicine
    • /
    • v.23 no.3
    • /
    • pp.174-187
    • /
    • 2002
  • Objectives : This study was carried out to determine whether Kamihaengche-tang plus Yulanijihwang-tang (KCYH) exerts a protective effect against oxidant-induced liver cell injury. Methods : Cell injury was estimated by measuring lactate dehydrogenase (LDH) and alanine aminotransferase (ALT) release, and lipid peroxidation was estimated by measuring malondialdehyde, a product of lipid peroxidation in rabbit liver slices. Results : Oxidants (tBHP and $H_2O_2$) increased dose-dependently LDH release which was significantly prevented by 1% KCYH. The protective effect of KCYH against oxidant-induced cell injury was dose-dependent in the range of 0.05-1 % concentrations. Similarly, KCYH inhibited oxidant-induced lipid peroxidation in a dose-dependent manner. When liver tissues were exposed to Hg (0.5 mM), ALT activity in the medium and lipid peroxidation in tissues were markedly increased. These changes were prevented by 1% KCYH, KCYH restored toxicant-induced inhibition of cellular GSH content. KCYH increased the activities of catalase and glutathion peroxidase in oxidant-treated tissues. Conclusions : These results indicate that KCYH exerts a protective effect against oxidant-induced liver cell injury, and this effect is attributed to prevention of lipid peroxidation. These effects may be due to an increase in concentration of endogenous antioxidants.

  • PDF

Free radical scavenging effect and protective activity from oxidative stress of broccoli flowers and sprouts (Broccoli flower와 Broccoli sprout의 라디칼 소거능 및 산화적 스트레스 개선 효과)

  • Kim, Hyun-Young;Lee, Young-A;Cho, Eun-Ju
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.1
    • /
    • pp.81-86
    • /
    • 2012
  • In this study, the antioxidative effect and protective potential against oxidative damage of extract and fractions from broccoli were investigated under in vitro and cellular system. The methanol (MeOH) extracts of broccoli flowers and sprouts were partitioned as dichloromethane, n-butanol (BuOH) and aqueous fractions. The comparison of antioxidative effect of broccoli flowers and sprouts showed that broccoli sprouts exerted the more effective protective activity from 2,2'-azobis (2-aminopropane) dihydrochloride (AAPH)-induced oxidative stress in LLC-$PK_1$ porcine renal epithelial cell. In addition, the extract and fractions from broccoli sprouts showed strong scavenging effect of 1,1-diphenyl-2-picrylhydrazyl radical and the BuOH fraction exerted the strongest activity. Therefore, the BuOH fraction was evaluated as the most active fraction with strong radical scavenging activity among the fractions of broccoli flowers and sprouts. The present study suggests the antioxidative potential against free radical-induced oxidative damage of flowers and sprouts of broccoli. In addition, the BuOH fraction of broccoli is considered as the active fraction with antioxidative effect.

Protective Effect of Korean Red Ginseng against 6-Hydroxydopamine-induced Nitrosative Cell Death via Fortifying Cellular Defense System (6-Hydroxydopamine으로 유도된 질소적 세포 사멸에 대한 고려홍삼 추출물의 보호효과)

  • Lee, Chan;Jang, Jung-Hee;Park, Gyu Hwan
    • YAKHAK HOEJI
    • /
    • v.60 no.2
    • /
    • pp.92-99
    • /
    • 2016
  • Parkinson's disease (PD) is one of the representative neurodegenerative movement disorders with the selective loss of dopaminergic neurons in the substantia nigra. 6-Hydroxydopamine (6-OHDA) is widely used as an experimental model system to mimic PD and has been reported to cause neuronal cell death via oxidative and/or nitrosative stress. Therefore, daily intake of dietary or medicinal plants which fortifies cellular antioxidant capacity can exert neuroprotective effects in PD. In the present study, we have investigated the protective effect of Korean red ginseng (KRG) against 6-OHDA-induced nitrosative death in C6 glioma cells. Treatment of C6 cells with 6-OHDA decreased cell viability and increased expression of inducible nitric oxide synthase, production of nitric oxide as well as peroxynitrite, and formation of nitrotyrosine. 6-OHDA led to apoptotic cell death as determined by decreased Bcl-2/Bax, phosphorylation of JNK, activation of caspase-3, and cleavage of PARP. Conversely, pretreatment of C6 cells with KRG attenuated 6-ODHA-induced cytotoxicity, apoptosis, and nitrosative damages. To further elucidate the molecular mechanism of KRG protection against 6-OHDA-induced nitrosative cell death, we have focused on the cellular self-defense molecules against exogenous noxious stimuli. KRG treatment up-regulated heme oxygenase-1 (HO-1), a key antioxidant enzyme essential for cellular defense against oxidative and/or nitrosative stress via activation of Nrf2. Taken together, these findings suggest KRG may have preventive and/or therapeutic potentials for the management of PD.

Effect of Exogenous Proline on Metabolic Response of Tetragenococcus halophilus under Salt Stress

  • He, Guiqiang;Wu, Chongde;Huang, Jun;Zhou, Rongqing
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.9
    • /
    • pp.1681-1691
    • /
    • 2017
  • This study investigated the effect of proline addition on the salt tolerance of Tetragenococcus halophilus. Salt stress led to the accumulation of intracellular proline in T. halophilus. When 0.5 g/l proline was added to hyperhaline medium, the biomass increased 34.6% (12% NaCl) and 27.7% (18% NaCl) compared with the control (without proline addition), respectively. A metabolomic approach was employed to reveal the cellular metabolic responses and protective mechanisms of proline upon salt stress. The results showed that both the cellular membrane fatty acid composition and metabolite profiling responded by increasing unsaturated and cyclopropane fatty acid proportions, as well as accumulating some specific intracellular metabolites (environmental stress protector). Higher contents of intermediates involved in glycolysis, the tricarboxylic acid cycle, and the pentose phosphate pathway were observed in the cells supplemented with proline. In addition, addition of proline resulted in increased concentrations of many organic osmolytes, including glutamate, alanine, citrulline, N-acetyl-tryptophan, and mannitol, which may be beneficial for osmotic homeostasis. Taken together, results in this study suggested that proline plays a protective role in improving the salt tolerance of T. halophilus by regulating the related metabolic pathways.

Protective effects of Betula platyphylla var. japonica extracts against the cellular damage induced by reactive oxygen species

  • Ji, Sang-Jin;Kim, Jeong-Hee
    • International Journal of Oral Biology
    • /
    • v.34 no.1
    • /
    • pp.15-20
    • /
    • 2009
  • In our present study, total methanol extracts prepared from B. platyphylla var. japonica showed a significant increase in cell proliferation upon the induction of oxidative stress by hydrogen peroxide or $\gamma$-ray irradiation. Total methanol extracts were fractionated into five separate preparations i.e. n-hexane, dichloromethane, ethylacetate, n-butanol and water fractions. Among these, the ethylacetate and butanol fractions of B. platyphylla var. japonica showed the highest protective effects against oxidative stress induced by hydrogen peroxide. These fractions also showed strong protective effects against $\gamma$-ray irradiation. When we evaluated the cytotoxicity of these fractions, the butanol fraction showed no effects in a colony formation assay. In addition, the butanol fraction showed a cell proliferation activation effect evidenced by significant increase in the colony formation of $\gamma$-ray irradiated cells. Both a radical scavenging activity and clonogenic activity assay suggested that the mechanism behind this protective effect against reactive oxygen species may be due to the radical scavenging and cell proliferation activity of B. platyphylla var. japonica extracts.

Ameliorative effect of black ginseng extract against oxidative stress-induced cellular damages in mouse hepatocytes

  • Choudhry, Qaisra Naheed;Kim, Jun Ho;Cho, Hyung Taek;Heo, Wan;Lee, Jeong-Jun;Lee, Jin Hyup;Kim, Young Jun
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.179-185
    • /
    • 2019
  • Background: Oxidative stress induces the production of reactive oxygen species (ROS), which play important causative roles in various pathological conditions. Black ginseng (BG), a type of steam-processed ginseng, has drawn significant attention due to its biological activity, and is more potent than white ginseng (WG) or red ginseng (RG). Methods: We evaluated the protective effects of BG extract (BGE) against oxidative stress-induced cellular damage, in comparison with WG extract (WGE) and RG extract (RGE) in a cell culture model. Ethanolic extracts of WG, RG, and BG were used to evaluate ginsenoside profiles, total polyphenols, flavonoid contents, and antioxidant activity. Using AML-12 cells treated with $H_2O_2$, the protective effects of WGE, RGE, and BGE on cellular redox status, DNA, protein, lipid damage, and apoptosis levels were investigated. Results: BGE exhibited significantly enhanced antioxidant potential, as well as total flavonoid and polyphenol contents. ATP levels were significantly higher in BGE-treated cells than in control; ROS generation and glutathione disulfide levels were lower but glutathione (GSH) and NADPH levels were higher in BGE-treated cells than in other groups. Pretreatment with BGE inhibited apoptosis and therefore protected cells from oxidative stress-induced cellular damage, probably through ROS scavenging. Conclusion: Collectively, our results demonstrate that BGE protects AML-12 cells from oxidative stress-induced cellular damages more effectively than WGE or RGE, through ROS scavenging, maintenance of redox status, and activation of the antioxidant defense system.

Propofol Post-conditioning Protects against COS-7 Cells in Hypoxia/reoxygenation Injury by Induction of Intracellular Autophagy

  • Kwak, Jin-Won;Kim, Eok-Nyun;Park, Bong-Soo;Kim, Yong-Ho;Kim, Yong-Deok;Yoon, Ji-Uk;Kim, Cheul-Hong;Yoon, Ji-Young
    • Journal of The Korean Dental Society of Anesthesiology
    • /
    • v.14 no.1
    • /
    • pp.49-56
    • /
    • 2014
  • Background: Propofol (2.6-diisopropylphenol) is a widely used intravenous anesthetic agent for the induction and maintenance of anesthesia during surgeries and sedation for ICU patients. Propofol has a structural similarity to the endogenous antioxidant vitamin E and exhibits antioxidant activities.13) However, the mechanism of propofol on hypoxia/reoxygenation (H/R) injury has yet to be fully elucidated. We investigated how P-PostC influences the autophagy and cell death, a cellular damage occurring during the H/R injury. Methods: The groups were randomly divided into the following groups: Control: cells were incubated in normoxia (5% CO2, 21% O2, and 74% N2) without propofol treatment. H/R: cells were exposed to 24 h of hypoxia (5% CO2, 1% O2, and 94% N2) followed by 12 h of reoxygenation (5% CO2, 21% O2, and 74% N2). H/R + P-PostC: cells post-treated with propofol were exposed to 24 h of hypoxia followed by 12 h of reoxygenation. 3-MA + P-PostC: cells pretreated with 3-MA and post-treated propofol were exposed to 24 h of hypoxia followed by 12 h of reoxygenation Results: The results of our present study provides a new direction of research on mechanisms of propofol-mediated cytoprotection. There are three principal findings of these studies. First, the application of P-PostC at the onset of reoxygenation after hypoxia significantly increased COS-7 cell viability. Second, the cellular protective effect of P-PostC in H/R induced COS-7 cells was probably related to activation of intra-cellular autophagy. And third, the autophagy pathway inhibitor 3-MA blocked the protective effect of P-PostC on cell viability, suggesting a key role of autophagy in cellular protective effect of P-PostC. Conclusions: These data provided evidence that P-PostC reduced cell death in H/R model of COS-7 cells, which was in agreement with the protection by P-PostC demonstrated in isolated COS-7 cells exposed to H/R injury. Although the this study could not represent the protection by P-PostC in vivo, the data demonstrate another model in which endogenous mechanisms evoked by P-PostC protected the COS-7 cells exposed to H/R injury from cell death.

Anti-melanogenesis effect of 2,5-dimethyl-4-hydroxy-3 [2H]-furanone

  • Jeon, Che-Ok;Ohf, Ji-Yeon;Koh, Jae-Sook;Jung, Sung-Won;Kim, Jung-Yeon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.22 no.2
    • /
    • pp.70-75
    • /
    • 1996
  • DMHF (2.5-dimethyl-4-hydroxy-3[2H]-furanone), an antioxidative compound from the reaction of L-cysteine/D-glucose scavenged efficiently 1,1-diphenyl-2-picryl hydrazyl free radicals. It exhibited an inhibitory effect on the autoxidation of linolenic acid, and the protective effect against UV cytotoxicity in cultured human fibroblast. In addition, DMHF appeared to prevent the cellular melanogenesis in the cultured murine melanoma cells more effectively than kojic acid, a well known inhibitor of melanogenesis, while the former was not so effective as the latter for the inhibition of the tyrosinase. Considering that cellular melanogenesis is a metabolic process triggered by oxidative stress, it ovas tentatively deduced that the antioxidative property of DMHF might afford the effect against cellular pigmentation by alleviating the causative stress. In toxicological tests such as irritation and sensitization, this compound turned out to be safe. The results of this study suggest that DMHF may be a novel inhibitor of melanogenesis, and that night be useful for application in cosmetics.

  • PDF

Protective Effect of Paeoniae Radix Alba against UVB Photodamage ( UVB 광손상에 대한 백작약의 보호 효과)

  • Sook Jahr Park;Jong Rok Lee
    • Herbal Formula Science
    • /
    • v.31 no.3
    • /
    • pp.183-191
    • /
    • 2023
  • Objective : UVB damages skin health by causing skin redness and intense inflammation, sunburn, and skin cancer. Paeoniae Radix Alba has been used to relieve gynecological symptoms, muscle spasms, and skin ailments. This study was conducted to confirm whether it has a protective effect against UVB photodamage. Methods : Ethanol extract of Paeoniae Radix Alba (PRA) was prepared by extracting 100 g Paeoniae Radix Alba in 1 L of ethanol for 48 h. Apoptosis was monitored by the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and expression levels of apoptosis indicator proteins, and tyrosinase activity was measured with a colorimetric commercial kit. Results : In human keratinocyte HaCaT cells, PRA reduced UVB-induced cell death through apoptosis by inhibiting PARP cleavage and caspase-3 and -9. UVB-induced increase in cellular reactive oxygen species (ROS) was suppressed by PRA pretreatment. PRA also showed dose-dependent ABTS and DPPH radical scavenging activities. Furthermore, the inhibitory effect of tyrosinase activity by PRA was confirmed. Conclusion : These results demonstrated the protective role of PRA in UVB photodamage of human keratinocytes, mainly due to its antioxidant and antiapoptotic properties. We also suggest that PRA can be considered as an effective natural agent to prevent skin photodamage.