• 제목/요약/키워드: Cellular protective effect

검색결과 338건 처리시간 0.024초

어성초 추출물 및 분획물의 항균, 항산화 및 세포보호활성 (Antimicrobial, Antioxidant and Cellular Protective Effects of Houttuynia cordata Extract and Fraction)

  • 윤믿음;이예슬;이윤주;박영민;박수남
    • 공업화학
    • /
    • 제29권4호
    • /
    • pp.452-460
    • /
    • 2018
  • 본 연구에서는 어성초(Houttuynia cordata)의 추출물 및 분획물을 제조하고 이들에 대한 생리활성과 성분분석을 하였다. 어성초는 50% 에탄올 추출물 및 에틸아세테이트 분획물을 제조하여 실험에 사용하였다. 항균활성 측정결과, S. aureus, B. subtilis에 대한 에틸아세테이트 분획의 MIC 값은 각각 78, $312{\mu}g/mL$으로 나타나 그람 양성균에 대하여 높은 활성을 보이는 것으로 나타났다. 1,1-Diphenyl-2-picrylhydrazyl (DPPH)에 대한 자유라디칼 소거활성($FSC_{50}$)은 50% 에탄올 추출물($27.15{\mu}g/mL$) 및 에틸아세테이트 분획($12.00{\mu}g/mL$)을 측정한 결과 에틸아세테이트 분획에서 활성이 더 크게 나타났다. Luminol-의존성 화학발광법을 이용한 $Fe^{3+}-EDTA/H_2O_2$계에서 생성된 활성산소종(reactive oxygen species, ROS)에 대한 총항산화능($OSC_{50}$)은 50% 에탄올 추출물($2.91{\mu}g/mL$), 에틸아세테이트 분획($0.983{\mu}g/mL$) 측정 결과 DPPH에 대한 소거활성과 같은 경향성을 보였다. 어성초 추출물의 HaCaT 세포보호효과를 확인하기 위해 UVB 조사 후 세포 내 ROS 소거활성을 확인한 결과, 어성초 에틸아세테이트 분획은 $1.6{\mu}g/mL$부터 농도 의존적으로 ROS 소거활성을 나타내었으며, 최고 농도인 $12.5{\mu}g/mL$에서 54.3%의 감소율을 보였다. 과산화수소로 유도된 세포보호효과 또한, 어성초 에틸아세테이트 분획은 $0.8{\mu}g/mL$부터 세포생존율을 유의적으로 증가시켜 최대 86.9%까지 증가시켰다. 실험에 사용된 어성초 추출물의 에틸아세테이트 분획을 가지고 TLC와 HPLC를 이용한 성분분석을 수행하였다. 그 결과 quercitrin, isoquercitrin, hyperoside, chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid, rutin 및 afzelin이 있음을 확인하였다. 이상의 결과들로부터, 어성초 추출물 및 분획물은 ROS를 소거하고 항균효과를 나타냄으로써 외부 환경으로부터 세포막을 보호할 수 있는 천연 항산화제 및 천연 방부제로서 화장품 분야에서 응용가능성이 있음을 시사하였다.

쿼세틴과 루틴을 담지한 양이온 리포좀의 특성조사 및 UVA에 대한 세포 보호 효과 (Characteristics and Cellular Protective Effects against UVA of Cationic Liposome Loaded with Quercetin and Rutin)

  • 구현아;김문진;김해수;하지훈;유은령;박수남
    • 공업화학
    • /
    • 제26권2호
    • /
    • pp.165-172
    • /
    • 2015
  • 쿼세틴과 쿼세틴의 배당체인 루틴은 천연 항산화제로 잘 알려진 플라보노이드이다. 본 연구에서는 플라보노이드(쿼세틴과 루틴)를 담지한 양이온 리포좀을 제조하여 세포 및 피부 투과성과 자외선(UVA)에 대한 HaCaT 세포 보호 효과를 평가하였다. 빈 양이온 리포좀의 입자 크기는 100~130 nm이며, 입자 표면 전위는 + 33.05 mV를 나타내었다. 포집효율은 루틴을 담지한 리포좀과 양이온 리포좀이 쿼세틴을 담지한 경우보다 높았다. 세포 내 이입율 비교결과, 양이온 리포좀이 일반 리포좀에 비해 약 5배 정도 높음을 확인했다. In vitro 상에서, 쿼세틴과 루틴이 용해된 PBS (phosphate-buffered saline) 수용액, 동량의 쿼세틴과 루틴을 담지한 리포좀과 양이온 리포좀의 피부투과율을 비교하였다. 양이온 리포좀에 담지하였을 경우 가장 높은 피부투과율을 보였다. 플라보노이드를 담지한 양이온 리포좀의 자외선(UVA $25J/cm^2$)에 대한 HaCaT 세포 보호 효과를 측정한 결과, 자외선만 조사한 군에 비해 플라보노이드 담지 양이온 리포좀을 처리한 군에서 높은 세포 보호 효과를 보였다. 결과적으로, 양이온 리포좀은 플라보노이드를 피부 속으로 전달하는데 있어서 매우 유용한 피부 전달 시스템임을 확인하였다. 따라서, 세포 보호 및 피부 흡수 증진 효과를 가지는 양이온 리포좀은 항노화 및 항산화 화장품 제형으로써 활용 가능성이 있음을 시사한다.

등수국 잎 추출물 유래 미백 및 항산화 활성 성분 (Whitening and Anti-oxidative Constituents from the Extracts of Hydrangea petiolaris Leaves)

  • 조성미;김정은;이남호
    • 대한화장품학회지
    • /
    • 제48권2호
    • /
    • pp.123-134
    • /
    • 2022
  • 본 연구에서는 등수국 잎 추출물의 미백 및 항산화 활성을 확인하고 유효성분을 분리하여 화학구조를 동정하였다. B16F10 melanoma 세포를 이용한 미백 활성 실험 결과, n-hexane (Hex) 분획물이 세포독성 없는 농도에서 멜라닌 생성 및 세포 내 tyrosinase 효소의 활성을 억제시키고 있음을 확인하였다. 또한 Hex 분획물이 tyrosinase 및 TRP-2 단백질의 발현을 감소시켰다. 반면, ethyl acetate (EtOAc) 분획물은 DPPH 및 ABTS+ 라디칼 소거 활성이 우수하였고, H2O2로 유도된 세포 손상에 대한 세포보호 효과를 나타내었다. Hex 및 EtOAc 분획물의 활성 성분을 규명하기 위해 컬럼 크로마토그래피를 수행하여 8 개의 화합물을 분리하였다; ethyl linoleate (1), ethyl linolenate (2), 1-linoleoyl glycerol (3), 1-linolenoyl glycerol (4), epi-catechin (5), afzelin (6), quercitrin (7), hyperin (8). 분리된 화합물에 대한 항산화 활성 측정 결과, 화합물 5 - 8의 라디칼 소거 활성이 우수함을 확인하였다. 또한 HPLC 분석을 통해 주성분인 quercitrin (7)의 함량을 측정한 결과, 추출물에서 31.3 mg/g, EtOAc 분획물에서 169.8 mg/g이 함유되어 있는 것으로 확인되었다. 이상의 연구 결과를 바탕으로 등수국 잎은 미백 및 항산화 효과를 갖는 천연 화장품 소재로의 개발이 가능할 것이라 사료된다.

Sirt1 Promotes DNA Damage Repair and Cellular Survival

  • Song, Seung-Hyun;Lee, Mi-Ok;Lee, Ji-Seon;Oh, Je-Sok;Cho, Sung-Uk;Cha, Hyuk-Jin
    • Biomolecules & Therapeutics
    • /
    • 제19권3호
    • /
    • pp.282-287
    • /
    • 2011
  • Sirt1, a nicotinamide adenine dinucleotide ($NAD^+$)-dependent histone deacetylase, is known to deacetylate a number of proteins that are involved in various cellular pathways such as the stress response, apoptosis and cell growth. Modulation of the stress response by Sirtuin 1 (Sirt1) is achieved by the deacetylation of key proteins in a cellular pathway, and leads to a delay in the onset of cancer or aging. In particular, Sirt1 is known to play an important role in maintaining genomic stability, which may be strongly associated with a protective effect during tumorigenesis and during the onset of aging. In these studies, Sirt1 was generated in stably expressing cells and during the stimulation of DNA damage to examine whether it promotes survival. Sirt1 expressing cells facilitated the repair of DNA damage induced by either ionizing radiation (IR) or bleomycin (BLM) treatment. Fastened damaged DNA repair in Sirt1 expressing cells corresponded to prompt activation of Chk2 and ${\gamma}$-H2AX foci formation and promoted survival. Inhibition of Sirt1 enzymatic activity by a chemical inhibitor, nicotinamide (NIC), delayed DNA damage repair, indicating that promoted DNA damage repair by Sirt1 functions to induce survival when DNA damage occurs.

해마 세포주에서 인삼의 고포도당에 의한 세포사멸 차단효과 (Ginsenosides Prevent High Glucose-induced Apoptosis in HT22 Cells)

  • 이정치;장선일
    • 동의생리병리학회지
    • /
    • 제23권5호
    • /
    • pp.1019-1024
    • /
    • 2009
  • Diabetic neuropathy is characterized by the decrease of cell viability in neuron, which is induced by the hyperglycemia. HT22 cell is the neuron cell line originated from hippocampus. Ginsenosides have been reported to retain anti-diabetic effect. However, the preventive effect of ginsenosides in the condition of diabetic neuropathy was not elucidated. Thus, this study was conducted to examine the protective effect of ginsenoside total saponin (GTS), panoxadiol (PD), and panoxatriol (PT) in the high glucose-induced cell death of HT22 cells, an in vitro cellular model for diabetic neuropathy. In present study, high glucose increased lactate dehydrogenase(LDH) activity, the lipid peroxide(LPO) formation and induced the decrease of cell viability. These effects were completely prevented by the treatment of GTS, but partially prevented by the treatment of PD and PT. High glucose also increased the expression of Bax and cleaved form of caspase-3 but decreased that of Bcl-2. These effects of high glucose on Bax, Bcl-2 and cleaved form of caspase-3 were completely prevented by the treatment of GTS, but partially prevented by the treatment of PD and PT in HT22 cells. In conclusion, ginsenosides prevented high glucose-induced cell death of hippocampal neuron through the inhibition of oxidative stress and apoptosis in HT 22 cells.

Direct Evidence for the Radioprotective Effect of Various Carbohydrates on Plasmid DNA and Escherichia coli Cells

  • Ryu, Hwa-Ja;Yi, Kyung-Eun;Kim, Do-Won;Jung, Yun-Dae;Chang, Suk-Sang;Seo, Eun-Seong;Lee, Ki-Young;Marceau-Day, M.L.;Kim, Do-Man
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권4호
    • /
    • pp.598-602
    • /
    • 2002
  • Damage to cells exposed to radiation is primarily attributed to direct effects on the structure of cellular DNA. Radiation-induced damage of pBluescript SK plasmid DNA and Escherichia coli $DH5\alpha$ were examined in the presence of various branched oligosaccharides, polysaccharides, and/or 8-MOP (8-methoxypsoralen). Branched oligosaccharides efficiently protected DNA and cells exposed to ultrasoft X-ray and UV irradiation. In the presence of 0.2% (w/v) branched oligosaccharides and polysaccharides, DNA can be protected from damage due to W and ultrasoft X-ray by a factor of 1.3-2.1 fo1d and 3.2-8.3 fold, respectively. The protective effect of cells exposed to UV or ultrasoft X-ray was also observed by branched oligosaccharides. The combination of MOP, a photoreagent, with carbohydrates increased the protective effects for DNA and cells, compared with that of a single use of MOP or carbohydrate alone.

The Neuro-Protective Effect of the Methanolic Extract of Perilla frutescens var. japonica and Rosmarinic Acid against H2O2-Induced Oxidative Stress in C6 Glial Cells

  • Lee, Ah Young;Wu, Ting Ting;Hwang, Bo Ra;Lee, Jaemin;Lee, Myoung-Hee;Lee, Sanghyun;Cho, Eun Ju
    • Biomolecules & Therapeutics
    • /
    • 제24권3호
    • /
    • pp.338-345
    • /
    • 2016
  • Neurodegenerative diseases are often associated with oxidative damage in neuronal cells. This study was conducted to investigate the neuro-protective effect of methanolic (MeOH) extract of Perilla frutescens var. japonica and its one of the major compounds, rosmarinic acid, under oxidative stress induced by hydrogen peroxide ($H_2O_2$) in C6 glial cells. Exposure of C6 glial cells to $H_2O_2$ enhanced oxidative damage as measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and thiobarbituric acid-reactive substance assays. The MeOH extract and rosmarinic acid prevented oxidative stress by increasing cell viability and inhibiting cellular lipid peroxidation. In addition, the MeOH extract and rosmarinic acid reduced $H_2O_2-indcued$ expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the transcriptional level. Moreover, iNOS and COX-2 protein expression was down-regulated in $H_2O_2-indcued$ C6 glial cells treated with the MeOH extract and rosmarinic acid. These findings suggest that P. frutescens var. japonica and rosmarinic acid could prevent the progression of neurodegenerative diseases through attenuation of neuronal oxidative stress.

Anti-oxidative Effect of a Protein from Cajanus indicus L against Acetaminophen-induced Hepato-nephro Toxicity

  • Ghosh, Ayantika;Sil, Parames C.
    • BMB Reports
    • /
    • 제40권6호
    • /
    • pp.1039-1049
    • /
    • 2007
  • Overdoses of acetaminophen cause hepato-renal oxidative stress. The present study was undertaken to investigate the protective effect of a 43 kDa protein isolated from the herb Cajanus indicus, against acetaminophen-induced hepatic and renal toxicity. Male albino mice were treated with the protein for 4 days (intraperitoneally, 2 mg/kg body wt) prior or post to oral administration of acetaminophen (300 mg/kg body wt) for 2 days. Levels of different marker enzymes (namely, glutamate pyruvate transaminase and alkaline phosphatase), creatinine and blood urea nitrogen were measured in the experimental sera. Intracellular reactive oxygen species production and total antioxidant activity were also determined from acetaminophen and protein treated hepatocytes. Indices of different antioxidant enzymes (namely, superoxide dismutase, catalase, glutathione-S-transferase) as well as lipid peroxidation end-products and glutathione were determined in both liver and kidney homogenates. In addition, Cytochrome P450 activity was also measured from liver microsomes. Finally, histopathological studies were performed from liver sections of control, acetaminophen-treated and protein pre- and post-treated (along with acetaminophen) mice. Administration of acetaminophen increased all the serum markers and creatinine levels in mice sera along with the enhancement of hepatic and renal lipid peroxidation. Besides, application of acetaminophen to hepatocytes increased reactive oxygen species production and reduced the total antioxidant activity of the treated hepatocytes. It also reduced the levels of antioxidant enzymes and cellular reserves of glutathione in liver and kidney. In addition, acetaminophen enhanced the cytochrome P450 activity of liver microsomes. Treatment with the protein significantly reversed these changes to almost normal. Apart from these, histopathological changes also revealed the protective nature of the protein against acetaminophen induced necrotic damage of the liver tissues. Results suggest that the protein protects hepatic and renal tissues against oxidative damages and could be used as an effective protector against acetaminophen induced hepato-nephrotoxicity.

녹즙혼합음료 섭취가 흡연자의 임파구 DNA 손상 및 혈장 항산화 영양상태에 미치는 영향 (The Effect of Green Vegetable Drink Supplementation on Cellular DNA Damage and Antioxidant Status of Korean Smokers)

  • 김혜영;박유경;김태석;강명희
    • Journal of Nutrition and Health
    • /
    • 제39권1호
    • /
    • pp.18-27
    • /
    • 2006
  • Smoking is well known to be associated with increased indices of tree radical-mediated damage of DNA, indicating that smoking may exacerbate the initiation and propagation of oxidative stresses, which are potential underlying processes in the pathogenesis of many diseases. The purpose of this study was to evaluate whether a daily regimen of green vegetable drink supplementation to smokers can be protective against endogenous lymphocytic DNA damage and whether it could enhance other antioxidant status. Twenty nonsmokers and nineteen smokers aged 23-60 were given 240 ml of green vegetable drink every day for 8 weeks in addition to their normal diet, and blood samples were drawn before and after the intervention. The 8 weeks of green vegetable drink consumption resulted in a significant decrease (p = 0.000, by paired t-test) in lymphocyte DNA damage expressed by TL (before: $63.13{\pm}1.05$ vs after: $37.86{\pm}10.83$, before: $66.73{\pm}1.24$ vs after: $36.51{\pm}1.13$), TM (before: $14.55{\pm}0.61$ vs after: $6.61{\pm}0.25$, before: $15.36{\pm}0.45$ vs after: $6.65{\pm}0.38$) and $\%$ DNA in tail (before: $19.7{\pm}0.41$ vs after: $16.6{\pm}0.37$, before: $20.6{\pm}0.31$ vs after: $17.1{\pm}0.5$) in both nonsmokers and smokers respectively. Vitamin C and TRAP level was not significantly changed after the supplementation. In conclusion, these results support the hypothesis that green vegetable drink exert a cancer-protective effect partially via a decrease in oxidative damage to DNA.

Protective role of paeoniflorin from hydrogen peroxide-mediated oxidative damage in C6 glial cells

  • Lee, Ah Young;Nam, Mi Na;Kim, Hyun Young;Cho, Eun Ju
    • Journal of Applied Biological Chemistry
    • /
    • 제63권2호
    • /
    • pp.137-145
    • /
    • 2020
  • Oxidative stress is one of the pathogenic mechanisms of various neurodegenerative diseases, such as Alzheimer's disease. Neuroglia, the most abundant cells in the brain, is thought to play an important role in the antioxidant defense system and neuronal metabolic support against neurotoxicity and oxidative stress. We investigated the protective effect of paeoniflorin (PF) against oxidative stress in C6 glial cells. Exposure of C6 glial cells to hydrogen peroxide (H2O2, 500 μM) significantly decreased cell viability and increased amounts of lactate dehydrogenase (LDH) release, indicating H2O2-induced cellular damage. However, treatment with PF significantly attenuated H2O2-induced cell death as shown by increased cell survival and decreased LDH release. The H2O2-stimulated reactive oxygen species production was also suppressed, and it may be associated with improvement of superoxide dismutase activity by treatment with PF. In addition, an increase in ratio of Bcl-2/Bax protein expression was observed after treatment with PF. In particular, the down-stream of the apoptotic signaling pathway was inhibited in the presence of PF, mostly by reduction of cleaved-poly ADP ribose polymerase, cleaved caspase-3, and -9 protein expression. Furthermore, H2O2-induced phosphorylation of c-Jun N-terminal kinase and extracellular signal-regulated kinase 1/2 was attenuated by treatment with PF. Taken together, neuroprotective effect of PF against oxidative stress probably result from the regulation of apoptotic pathway in C6 glial cells. In conclusion, our findings suggest that PF may be a potent therapeutic agent for neurodegenerative disorders.