DOI QR코드

DOI QR Code

Anti-oxidative Effect of a Protein from Cajanus indicus L against Acetaminophen-induced Hepato-nephro Toxicity

  • Published : 2007.11.30

Abstract

Overdoses of acetaminophen cause hepato-renal oxidative stress. The present study was undertaken to investigate the protective effect of a 43 kDa protein isolated from the herb Cajanus indicus, against acetaminophen-induced hepatic and renal toxicity. Male albino mice were treated with the protein for 4 days (intraperitoneally, 2 mg/kg body wt) prior or post to oral administration of acetaminophen (300 mg/kg body wt) for 2 days. Levels of different marker enzymes (namely, glutamate pyruvate transaminase and alkaline phosphatase), creatinine and blood urea nitrogen were measured in the experimental sera. Intracellular reactive oxygen species production and total antioxidant activity were also determined from acetaminophen and protein treated hepatocytes. Indices of different antioxidant enzymes (namely, superoxide dismutase, catalase, glutathione-S-transferase) as well as lipid peroxidation end-products and glutathione were determined in both liver and kidney homogenates. In addition, Cytochrome P450 activity was also measured from liver microsomes. Finally, histopathological studies were performed from liver sections of control, acetaminophen-treated and protein pre- and post-treated (along with acetaminophen) mice. Administration of acetaminophen increased all the serum markers and creatinine levels in mice sera along with the enhancement of hepatic and renal lipid peroxidation. Besides, application of acetaminophen to hepatocytes increased reactive oxygen species production and reduced the total antioxidant activity of the treated hepatocytes. It also reduced the levels of antioxidant enzymes and cellular reserves of glutathione in liver and kidney. In addition, acetaminophen enhanced the cytochrome P450 activity of liver microsomes. Treatment with the protein significantly reversed these changes to almost normal. Apart from these, histopathological changes also revealed the protective nature of the protein against acetaminophen induced necrotic damage of the liver tissues. Results suggest that the protein protects hepatic and renal tissues against oxidative damages and could be used as an effective protector against acetaminophen induced hepato-nephrotoxicity.

Keywords

References

  1. Benzie, I. F. F. and Strain J. J. (1999) Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 299, 15-27. https://doi.org/10.1016/S0076-6879(99)99005-5
  2. Bonaventura, J., Schroeder, W. A. and Fang, S. (1972) Human erythrocyte catalase:an improved method of isolation and a revaluation of reported properties. Arch. Biochem. Biophys. 150, 606-617. https://doi.org/10.1016/0003-9861(72)90080-X
  3. Botta, D., Shi, S., White, C. C., Dabrowski, M. J., Keener, C. L., Srinouanprachanh, S. L., Farin, F. M., Ware, C. B., Ladiges, W. C., Pierce, R. H., Fausto. N. and Kavanagh, T. (2006) Acetaminophen-induced liver injury is attenuated in male glutamate-cysteine ligase transgenic mice. J. Biol. Chem. 281, 28865-28875. https://doi.org/10.1074/jbc.M605143200
  4. Bonsnes, R. W. and Taussky, H. H. (1945) On the colorimetric determination of creatinine by the Jaffe reaction. J. Biol. Chem. 158, 581-591.
  5. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  6. Cobden, I., Record, C. O., Ward, M. K. and Kerr, D. N. S. (1982) Paracetamol induced acute renal failure in the absence of fulminant liver damage. Br. Med. J. 284, 21-22. https://doi.org/10.1136/bmj.284.6308.21
  7. Crocker, C. L. (1967) Rapid determination of urea nitrogen in serum or plasma without deproteinisation. Am. J Med. Technol. 33, 361-365.
  8. Dahlin, D. C., Miwa, G. T., Lu, A. Y. and Nelson, S. D. (1984) Nacetyl p-benzoquinimine: a cytochrome P450 mediated oxidation product of acetaminophen. Proc. Natl. Acad. Sci. USA 81, 1327-1331. https://doi.org/10.1073/pnas.81.5.1327
  9. Eguia, L. and Materson, B. J. (1997) Acetaminophen related acute renal failure without fulminant hepatic failure. Pharmacotherapy 17, 363-370.
  10. El-Beshbishy, H. A. (2005) Hepatoprotective effect of green tea (Camellia sinensis) extract against tamoxifen-induced liver injury in rats. J. Biochem. Mol. Biol. 38, 300-306. https://doi.org/10.5483/BMBRep.2005.38.5.563
  11. Esterbauer, H and Cheeseman, K. H. (1990) Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4- hydroxynonenal. Methods Enzymol. 186, 407-421. https://doi.org/10.1016/0076-6879(90)86134-H
  12. Ghosh, A. and Biswas, K. (1973) (Ed) A. Chatterjee, Calcutta: Calcutta University Press Bhartiya Banausadhi 2, 332-334.
  13. Ghosh, A., Sarkar, K. and Sil, P. C. (2006) Protective effect of a 43 kDa protein from the leaves of the herb, Cajanus indicus L on chloroform induced hepatic-disorder. J. Biochem. Mol. Biol. 39, 197-207. https://doi.org/10.5483/BMBRep.2006.39.2.197
  14. Ghosh, A. and Sil, P. C. (2006) A 43 kDa protein from the leaves of the herb, Cajanus indicus L, modulates chloroform induced hepatotoxicity in vitro. Drug Chem. Toxicol. 29, 397-413. https://doi.org/10.1080/01480540600837944
  15. Habig, W. H. and Jakoby, W. B. (1974) Glutathione S-Transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 7130-7139.
  16. James, L. P., Mayeux, P. R. and Hinson, J. A. (2003) Acetaminophen induced hepatotoxicity. Drug. Metab. Dispos. 31, 1499-1506. https://doi.org/10.1124/dmd.31.12.1499
  17. Kakkar, P., Das, B. and Viswanathan, P. N. (1984) A modified spectrophotometric assay of superoxide dismutase. Indian J. Biochem. Biophys. 21, 130-132.
  18. Kanno, S., Tomizawa, A., Hiura, T., Osanai, Y., Kakuta, M., Kitajima, Y., Koiwai, K.,Ohtake, T., Ujibe, M and Ishikawa, M. (2006). Melatonin Protects on Toxicity by Acetaminophen But Not on Pharmacological Effects in Mice. Biol. Pharm. Bull. 29, 472-476. https://doi.org/10.1248/bpb.29.472
  19. Kirtikar, K. R. and Basu, B. D. (1935) Papilionacea: Cajanus indicus; in Indian Medicinal Plants, Blatter, E., Caius, J. F. and Mhaskarr, R. S. (eds.), pp. 809-11.2.2, Probasi Press, Calcutta, India.
  20. Kind, P. R. N. and King, E. J. (1954) Estimation of plasma phosphatase by determination of hydrolyzed phenol with antipyrine. J. Clin. Path. 7, 322-326. https://doi.org/10.1136/jcp.7.4.322
  21. Knight, T. R., Kurtz, A., Bajt, M. L., Hinson, J. A. and Jaeschkae, H. (2001) Vascular and hepatocellular peroxonitrite formation during acetaminophen toxicity: Role of mitochondrial oxidant stress. Toxicol. Sci. 62, 212-220. https://doi.org/10.1093/toxsci/62.2.212
  22. Manna, P., Sinha, M. and Sil, P. C. (2007a) A 43 kDa protein isolated from the herb Cajanus indicus L attenuates sodium fluorideinduced hepatic and renal disorders in vivo. J. Biochem. Mol. Biol. 40, 382-395. https://doi.org/10.5483/BMBRep.2007.40.3.382
  23. Manna, P., Sinha, M. and Sil, P. C. (2007b) Galactosamine-induced hepatotoxic effect and hepatoprotective role of a protein isolated from the herb Cajanus indicus L in vivo. J. Biochem. Mol. Toxicol. 21, 13-23. https://doi.org/10.1002/jbt.20154
  24. Mansour, H. H., Hafez, H. F. and Fahmy, N. M. (2006) Silymarin modulates Cisplatin-induced oxidative stress and hepatotoxicity in rats. J. Biochem. Mol. Biol. 39, 656-661. https://doi.org/10.5483/BMBRep.2006.39.6.656
  25. Marsh, W. H., Fingerhut, B. and Miller, H. (1965) Automated and manual direct methods for the determination of blood urea. Clin. Chem. 11, 624-627.
  26. Michael, S. L., Pumford, N. R., Mayeux, P. R., Niesman, M. R. and Hinson, J. A. (1999) Pretreatment of mice with macrophage inactivators decreases acetaminophen hepatotoxicity and the formation of reactive oxygen and nitrogen species. Hepatology 30, 186-195. https://doi.org/10.1002/hep.510300104
  27. Mitchell, J. R., Jollow, D. J., Potter, W. Z., Gillete, J. R. and Brodie, B. B. (1973) Acetaminophen induced hepatic necrosis. IV. Protective role of glutathione. J. Pharmacol. Exp. Ther. 187, 211-217.
  28. Montilla, P., Barcos, M., Munoz, M. C., Bujalance, I., Munoz- Castaneda, J. R. and Tunez, I. (2005) Red wine prevents brain oxidative stress and nephropathy in streptozotocin-induced diabetic rats. J. Biochem. Mol. Biol. 38, 539-544. https://doi.org/10.5483/BMBRep.2005.38.5.539
  29. Nakae, D., Yamamoto, K., Yoshij, H., Kinugasa, T., Marayuma, H., Farber, J. L. and Konishi, Y. (1990) Liposome-encapsulated superoxide dismutase prevents liver necrosis induced by Acetaminophen. Am. J. Pathol. 136, 787-795.
  30. Nishikimi, M., Rao, N. A. and Yagi, K. (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun. 46, 849-854. https://doi.org/10.1016/S0006-291X(72)80218-3
  31. Patten, C. J., Ishizaki, H., Aoyama, T., Lee, M., Ning, S. M. and Huang, W. (1992) Catalytic properties of human cytochrome P450 2E1 produced by cDNA expression in mammalian cells. Arch. Biochem. Biophys. 299, 163-171. https://doi.org/10.1016/0003-9861(92)90258-X
  32. Proudfoot, A. T. and Wright, N. (1970) Acute Paracetamol poisoning. Br. Med. J. 3, 557-558. https://doi.org/10.1136/bmj.3.5722.557
  33. Rajesh, M. G. and Latha, M. S. (2004) Protective activity of Glycyrrhiza glabra Linn. on Carbon-tetrachloride-induced peroxidative damage. Indian J. Pharmacol. 36, 284-287.
  34. Reitman, S. and Franke, S. A. (1957) A colorimetric method for the determination of serum glutamic oxaloacetic and glutamic pyruvic transminases. Am. J. Clin. Path. 28, 56-63. https://doi.org/10.1093/ajcp/28.1.56
  35. Sarkar, K., Ghosh, A. and Sil, P. C. (2005) Preventive and curative role of a 43 kDa protein from the leaves of the herb Cajanus indicus L on thioacetamide induced hepatotoxicity in vivo. Hepatol. Res. 33, 39-49. https://doi.org/10.1016/j.hepres.2005.06.007
  36. Sarkar, K. and Sil, P. C. (2006) A 43 kDa protein from the herb Cajanus indicus L. protects thioacetamide induced cytotoxicity in hepatocytes. Toxicol. In Vitro 20, 634-640. https://doi.org/10.1016/j.tiv.2005.11.003
  37. Sarkar, K., Ghosh, A., Kinter, A., Mazumder, B. and Sil, P. C. (2006) Purification and characterization of a 43 kDa hepatoprotective protein from the herb Cajanus indicus L. Protein. J. 25, 411-421. https://doi.org/10.1007/s10930-006-9030-7
  38. Sener, G., Omurtag, G. Z., Sehirli, O., Tozan, A., Yuksel, M., Ercan, F. and Gedik, N. (2006). Protective effects of ginkgo biloba against acetaminophen-induced toxicity in mice. Mol. Cell. Biochem. 283, 39-45. https://doi.org/10.1007/s11010-006-2268-8
  39. Sinha, M., Manna, P. and Sil, P. C. (2007a) Amelioration of galactosamine-induced nephrotoxicity by a protein isolated from the leaves of the herb, Cajanus indicus L. BMC. Complement. Altern. Med. 7, 11. https://doi.org/10.1186/1472-6882-7-11
  40. Sinha, M., Manna, P. and Sil, P. C. (2007b) A 43 kDa protein from the herb, Cajanus indicus L., protects against fluoride induced oxidative stress in mice erythrocytes. Pathophysiology 14, 47-54. https://doi.org/10.1016/j.pathophys.2007.01.001
  41. Sinha, M., Manna, P. and Sil, P. C. (2007c) Attenuation of cadmium chloride induced cytotoxicity in murine hepatocytes by a protein isolated from the leaves of the herb Cajanus indicus L. Arch. Toxicol. 81, 397-406. https://doi.org/10.1007/s00204-007-0176-7
  42. Soni, M. G., Raniah, S. K., Mumtaz, M. M., Clewell, H. and Mehendale, H. M. (1999) Toxicant inflicted injury and stimulated tissue repair are opposing toxicodynamic forces in predictive toxicology. Regulatory Pharmacol. Toxicol. 19, 165-174.
  43. Thakore, K. N. and Mehendale, H. M. (1994) Effect of Phenobarbital and mirex pretreatments on carbon tetrachloride auto protection. Toxicol. Pathol. 22, 291-299. https://doi.org/10.1177/019262339402200307
  44. Thomas, S. H. L. (1993) Paracetamol (Acetaminophen) poisoning. Pharmacol. Ther. 60, 91-120. https://doi.org/10.1016/0163-7258(93)90023-7
  45. Tietze, F. (1969) Enzymic method for quantitative determination of nanogram amount of total and oxidizes glutathione: applications to mammalian blood and other tissues. Anal. Biochem. 27, 502-522. https://doi.org/10.1016/0003-2697(69)90064-5
  46. Weng, D., Lu, Y., Wei, Y., Liu, Y. and Shen, P. (2007) The role of ROS in microcystin-LR-induced hepatocyte apoptosis and liver injury in mice. Toxicology 232, 15-23. https://doi.org/10.1016/j.tox.2006.12.010
  47. Xinsheng, G., Sui, K., Duan, L., Tao, S., Paul, T., Arnold, R., Michael, G., Wen, X. and Yanan, T. (2006) Role of NF-$\kappa$B in Regulation of PXR-mediated Gene Expression: A mechanism for suppression of cytochrome P-450 3A4 by peoinflammatory agents. J. Biol. Chem. 281, 17882-17889. https://doi.org/10.1074/jbc.M601302200

Cited by

  1. Nephroprotective and antioxidant activities ofSalacia oblongaon acetaminophen-induced toxicity in rats vol.25, pp.19, 2011, https://doi.org/10.1080/14786419.2010.537269
  2. Paracetamol-induced nephrotoxicity and oxidative stress in rats: the protective role ofNigella sativa vol.54, pp.10, 2016, https://doi.org/10.3109/13880209.2016.1145701
  3. Acetaminophen induced renal injury via oxidative stress and TNF-α production: Therapeutic potential of arjunolic acid vol.268, pp.1-2, 2010, https://doi.org/10.1016/j.tox.2009.11.011
  4. Evaluation of nephroprotective, diuretic, and antioxidant activities ofplectranthus amboinicuson acetaminophen-induced nephrotoxic rats vol.20, pp.4, 2010, https://doi.org/10.3109/15376511003736787
  5. Hesperidin alleviates acetaminophen induced toxicity in wistar rats by abrogation of oxidative stress, apoptosis and inflammation vol.208, pp.2, 2012, https://doi.org/10.1016/j.toxlet.2011.10.023
  6. Lipid peroxidation and antioxidant status in kidney and liver of rats treated with sulfasalazine vol.256, pp.3, 2009, https://doi.org/10.1016/j.tox.2008.11.010
  7. The impact of paracetamol on selected biomarkers of the mollusc speciesCorbicula fluminea vol.29, pp.1, 2014, https://doi.org/10.1002/tox.20774
  8. Mitigation of Azathioprine-Induced Oxidative Hepatic Injury by the Flavonoid Quercetin in Wistar Rats vol.18, pp.8, 2008, https://doi.org/10.1080/15376510802205791
  9. Artemisia pallensalleviates acetaminophen induced toxicity via modulation of endogenous biomarkers vol.53, pp.4, 2015, https://doi.org/10.3109/13880209.2014.934382
  10. Acupuncture inhibits liver injury induced by morphine plus acetaminophen through antioxidant system vol.8, pp.3, 2016, https://doi.org/10.1016/j.eujim.2015.12.009
  11. Involvement of both intrinsic and extrinsic pathways in hepatoprotection of arjunolic acid against cadmium induced acute damage in vitro vol.283, pp.2-3, 2011, https://doi.org/10.1016/j.tox.2011.03.006
  12. Acetaminophen-induced nephrotoxicity in rats: Protective role ofCardiospermum halicacabum vol.50, pp.2, 2012, https://doi.org/10.3109/13880209.2011.596843
  13. Protective effect of selected urease positive Lactobacillus strains on acetaminophen induced uremia in rats vol.4, pp.2, 2014, https://doi.org/10.1016/j.bionut.2014.02.001
  14. Ameliorative effect of naringin in acetaminophen-induced hepatic and renal toxicity in laboratory rats: role of FXR and KIM-1 vol.38, pp.6, 2016, https://doi.org/10.3109/0886022X.2016.1163998
  15. Purification and characterisation of a novel antioxidant protein molecule from Phyllanthus niruri vol.114, pp.4, 2009, https://doi.org/10.1016/j.foodchem.2008.11.022
  16. Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis vol.87, pp.7, 2013, https://doi.org/10.1007/s00204-013-1034-4
  17. Galangin Prevents Acute Hepatorenal Toxicity in Novel Propacetamol-Induced Acetaminophen-Overdosed Mice vol.18, pp.11, 2015, https://doi.org/10.1089/jmf.2014.3328
  18. Protection of acetaminophen induced mitochondrial dysfunctions and hepatic necrosis via Akt-NF-κB pathway: Role of a novel plant protein vol.177, pp.2, 2009, https://doi.org/10.1016/j.cbi.2008.09.006
  19. Evaluation of nephroprotective and antioxidant activity ofMahonia leschenaultia takedaon acetaminophen-induced toxicity in rat vol.92, pp.4, 2010, https://doi.org/10.1080/02772240903000648
  20. Efficacy and Safety of Folic Acid During Toxic Hepatitis Induced by Acute Overdose of Paracetamol vol.5, pp.3, 2009, https://doi.org/10.3923/ijp.2009.208.214
  21. Protective effect of arjunolic acid against atorvastatin induced hepatic and renal pathophysiology via MAPK, mitochondria and ER dependent pathways vol.112, 2015, https://doi.org/10.1016/j.biochi.2015.02.016
  22. Traditional extract of Pithecellobium dulce fruits protects mice against CCl4 induced renal oxidative impairments and necrotic cell death vol.19, pp.2, 2012, https://doi.org/10.1016/j.pathophys.2012.02.001
  23. Attenuation of oxidative stress by syringic acid on acetaminophen-induced nephrotoxic rats vol.21, pp.6, 2012, https://doi.org/10.1007/s00580-011-1327-z
  24. An update on oxidative stress-mediated organ pathophysiology vol.62, 2013, https://doi.org/10.1016/j.fct.2013.09.026
  25. A 35kD Phyllanthus niruri protein modulates iron mediated oxidative impairment to hepatocytes via the inhibition of ERKs, p38 MAPKs and activation of PI3k/Akt pathway vol.56, 2013, https://doi.org/10.1016/j.fct.2013.02.013
  26. Modulation of catalytic functionality of alkaline phosphatase induced by semiconductor quantum dots: evidence of substrate-mediated protection vol.6, pp.6, 2016, https://doi.org/10.1039/C5RA22591D
  27. Effect of acetaminophen on the progression of renal damage in adenine induced renal failure model rats vol.91, pp.25-26, 2012, https://doi.org/10.1016/j.lfs.2012.09.018
  28. Therapeutic potential of hemin in acetaminophen nephrotoxicity in rats vol.27, pp.2, 2009, https://doi.org/10.1016/j.etap.2008.11.002
  29. The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress vol.674, pp.1-2, 2009, https://doi.org/10.1016/j.mrgentox.2008.09.015
  30. Cajanus indicus leaf protein: Beneficial role in experimental organ pathophysiology. A review vol.18, pp.4, 2011, https://doi.org/10.1016/j.pathophys.2011.05.001
  31. A 43 kD protein from the leaves of the herb Cajanus indicus L. modulates doxorubicin induced nephrotoxicity via MAPKs and both mitochondria dependent and independent pathways vol.94, pp.6, 2012, https://doi.org/10.1016/j.biochi.2012.03.003
  32. Screening of herbal medicines for recovery of acetaminophen-induced nephrotoxicity vol.27, pp.2, 2009, https://doi.org/10.1016/j.etap.2008.10.009
  33. Acetaminophen induced acute liver failure via oxidative stress and JNK activation: Protective role of taurine by the suppression of cytochrome P450 2E1 vol.44, pp.3, 2010, https://doi.org/10.3109/10715760903513017
  34. Hepatoprotective activity of a vinylic telluride against acute exposure to acetaminophen vol.661, pp.1-3, 2011, https://doi.org/10.1016/j.ejphar.2011.04.031
  35. Oxidative stress as a mechanism underlying sulfasalazine-induced toxicity vol.10, pp.2, 2011, https://doi.org/10.1517/14740338.2011.529898
  36. An Amino Acids Mixture Improves the Hepatotoxicity Induced by Acetaminophen in Mice vol.2013, 2013, https://doi.org/10.1155/2013/615754
  37. Ameliorative potential of whey protein hydrolysate against paracetamol-induced oxidative stress vol.96, pp.3, 2013, https://doi.org/10.3168/jds.2012-6080
  38. Hepatoprotective effect of withanolide-rich fraction in acetaminophen-intoxicated rat: decisive role of TNF-α, IL-1β, COX-II and iNOS vol.54, pp.11, 2016, https://doi.org/10.3109/13880209.2016.1157193
  39. Effects of acetaminophen on reactive oxygen species and nitric oxide redox signaling in kidney of arsenic-exposed rats vol.49, pp.4, 2011, https://doi.org/10.1016/j.fct.2011.01.003
  40. Modulation of Bax/Bcl-2 and caspases by probiotics during acetaminophen induced apoptosis in primary hepatocytes vol.49, pp.4, 2011, https://doi.org/10.1016/j.fct.2010.11.041
  41. Doxorubicin-induced neurotoxicity is attenuated by a 43-kD protein from the leaves ofCajanus indicusL. via NF-κB and mitochondria dependent pathways vol.46, pp.6, 2012, https://doi.org/10.3109/10715762.2012.678841
  42. Chrysin Protects Rat Kidney from Paracetamol-Induced Oxidative Stress, Inflammation, Apoptosis, and Autophagy: A Multi-Biomarker Approach vol.85, pp.1, 2017, https://doi.org/10.3390/scipharm85010004