• 제목/요약/키워드: Cellular pathway

검색결과 935건 처리시간 0.025초

HQSAR Study of Tricyclic Azepine Derivatives as an EGFR (Epidermal Growth Factor Receptor) Inhibitors

  • Chung, Hwan-Won;Lee, Kyu-Whan;Oh, Jung-Soo;Cho, Seung-Joo
    • Molecular & Cellular Toxicology
    • /
    • 제3권3호
    • /
    • pp.159-164
    • /
    • 2007
  • Stimulation of epidermal growth factor receptor (EGFR) is essential in signaling pathway of tumor cells. Thus, EGFR has intensely studied as an anticancer target. We developed hologram quantitative structure activity relationship (HQSAR) models for data set which consists of tricyclic azepine derivatives showing inhibitory activities for EGFR. The optimal HQSAR model was generated with fragment size of 6 to 7 while differentiating fragments having different atom and connectivity. The model showed cross-validated $q^2$ value of 0.61 and non-cross-validated $r^2$ value of 0.93. When the model was validated with an external set excluding one outlier, it gave predictive $r^2$ value of 0.43. The contribution maps generated from this model were used to interpret the atomic contribution of each atom to the overall inhibition activity. This can be used to find more efficient EGFR inhibitors.

Ubiquitination of p53 is Involved in Troglitazone Induced Apoptosis in Cervical Cancer Cells

  • Chen, Hui-Min;Zhang, Ding-Guo;Wu, Jin-Xiz;Pei, Dong-Sheng;Zheng, Jun-Nian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권5호
    • /
    • pp.2313-2318
    • /
    • 2014
  • Peroxisome proliferator-activated receptor gamma (PPAR-${\gamma}$), a ligand-dependent nuclear transcription factor, has been found to widely exist in tumor tissues and plays an important role in affecting tumor cell growth. In this study, we investigated the effect of PPAR-${\gamma}$ on aspects of the cervical cancer malignant phenotype, such as cell proliferation and apoptosis. Cell growth assay, Western blotting, Annexin V and flow cytometry analysis consistently showed that treatment with troglitazone (TGZ, a PPAR-${\gamma}$ agonist) led to dose-dependent inhibition of cervical cancer cell growth through apoptosis, whereas T0070907 (another PPAR-${\gamma}$ antagonist) had no effect on Hela cell proliferation and apoptosis. Furthermore, we also detected the protein expression of p53, p21 and Mdm2 to explain the underlying mechanism of PPAR-${\gamma}$ on cellular apoptosis. Our work, finally, demonstrated the existence of the TGZ-PPAR-${\gamma}$-p53 signaling pathway to be a critical regulator of cell apoptosis. These results suggested that PPAR-${\gamma}$ may be a potential therapeutic target for cervical cancer.

Identification of a Novel Fusion Gene (HLA-E and HLA-B) by RNA-seq Analysis in Esophageal Squamous Cell Carcinoma

  • Jiang, Yu-Zhang;Li, Qian-Hui;Zhao, Jian-Qiang;Lv, Jun-Ji
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권5호
    • /
    • pp.2309-2312
    • /
    • 2014
  • Esophageal squamous cell carcinoma (ESCC) is the most common histologic subtype of esophageal cancer and is characterized by a poor prognosis. Determining gene changes in ESCCs should improve understanding of putative risk factors and provide potential targets for therapy. We sequenced about 55 million pair-end reads from a pair of adjacent normal and ESCC samples to identify the gene expression level and gene fusion. Sanger sequencing was used to verify the result. About 17 thousand genes were expressed in the tissues, of which approximately 2400 demonstrated significant differences between tumor and adjacent non tumor tissue. GO and KEGG pathway analysis revealed that many of these genes were associated with cellular adherence and movement, simulation responses and immune responses. Notably we identified and validated one fusion gene, HLA-E and HLA-B, located 1 MB apart. We also identified thousands of remarkably expressed transcripts. In conclusion, a novel fusion gene HLA-E and HLA-B was identified in ESCC via whole transcriptome sequencing, which would be a biomarker for ESCC diagnosis and target for therapy, shedding new light for better understanding of ESCC tumorigenesis.

Role of the transforming growth factor (TGF)-β1 and TGF-β1 signaling pathway on the pathophysiology of respiratory pneumococcal infections

  • Andrade, Maria Jose;Lim, Jae Hyang
    • Journal of Yeungnam Medical Science
    • /
    • 제34권2호
    • /
    • pp.149-160
    • /
    • 2017
  • Streptococcus pneumoniae, pneumococcus, is the most common cause of community-acquired pneumonia (CAP). CAP is an important infectious disease with high morbidity and mortality, and it is still one of the leading causes of death worldwide. Many genetic factors of the host and various environmental factors surrounding it have been studied as important determinants of the pathophysiology and outcomes of pneumococcal infections. Various cytokines, including transforming growth factor $(TGF)-{\beta}1$, are involved in different stages of the progression of pneumococcal infection. $TGF-{\beta}1$ is a cytokine that regulates a wide range of cellular and physiological functions, including immune and inflammatory responses. This cytokine has long been known as an anti-inflammatory cytokine that is critical to preventing the progression of an acute infection to a chronic condition. On the other hand, recent studies have unveiled the diverse roles of $TGF-{\beta}1$ on different stages of pneumococcal infections other than mitigating inflammation. This review summarizes the recent findings of the role of $TGF-{\beta}1$ on the pathophysiology of pneumococcal infections, which is fundamental to developing novel therapeutic strategies for such infections in immune-compromised patients.

Cellular Mechanisms of a New Pyrazinone Compound that Induces Apoptosis in SKOV-3 Cells

  • Wang, Guan;Jiang, Meng-Ying;Meng, Ying;Song, Hong-Rui;Shi, Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권2호
    • /
    • pp.797-802
    • /
    • 2014
  • We screened a small molecular library that was designed and independently synthesized in vitro and found a new drug (MY-03-01) that is active against ovarian cancer. We established that MY-03-01 effectively inhibited SKOV-3 cell survival in a dose-dependent manner, based on cell viability rates, and that it not only induced SKOV-3 apoptosis by itself, but also did so synergistically with paclitaxel. Secondly, when MY-03-01 was applied at $40{\mu}M$, its hemolytic activity was less than 10%, compared with the control, and there was almost no damage to nor mal cells at this concentration. In addition, we used DAPI staining and flow cytometry to show that MY-03-01 could significantly induce apoptosis of SKOV-3 cells. Finally, we found that MY-03-01 likely induced SKOV-3 apoptosis by activating caspase3 and caspase9 through the mitochondrial pathway.

The Effects of Acute Osmotic Stress on Innate Immunity of Nile Tilapia (Oreochromis niloticus)

  • Choi, Sang-Hoon;Park, Kwan-Ha
    • Fisheries and Aquatic Sciences
    • /
    • 제13권4호
    • /
    • pp.343-349
    • /
    • 2010
  • The effects of osmotic stress on the non-specific immune response of Nile tilapia, Oreochromis niloticus, were investigated. Osmoregulatory mechanism of tilapia has been studied, but less information is available about innate immune response of O. niloticus faced with hyperosmolality. Acute osmotic stress was elicited by transferring tilapia from freshwater (FW) to 24 psu seawater (SW). Non-specific immune parameters including lysozyme activities of plasma and head kidney (HK), alternative complement pathway (ACP) activity in plasma, phagocytic capacities of spleen and HK immune cells, and respiratory burst activity of immune cells in both HK and spleen were analyzed. Lysozyme activities were increased at 1 h and 30 h after transfer to SW, but decreased at 10 h after SW transfer. Conversely, ACP activity increased 10 h after SW transfer. Phagocytic capacity increased slightly at 1 h and 5 h after SW transfer, and respiratory burst activity showed an increase in superoxide release at 10 h after SW transfer. Taken together, these results indicate that the exposure of tilapia to hyperosmotic conditions has immunostimulatory effects on cellular and humoral immune reactions.

Effect of Fibroblast Growth Factor-2 on Migration and Proteinases Secretion of Human Umbilical Vein Endothelial Cells

  • Oh, In-Suk;Kim, Hwan-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권2호
    • /
    • pp.379-384
    • /
    • 2004
  • Fibroblast growth factor-2 (FGF-2) is known to modulate numerous cellular functions in various cell types, including cell proliferation, differentiation, survival, adhesion, migration, and motility, and also in processes such as wound healing, angiogenesis, and vasculogenesis. FGF-2 regulates the expression of several molecules thought to mediate critical steps during angiogenesis. This study examines the mechanisms underlying FGF-2-induced cell migration, using human umbilical vein endothelial cells (HUVECs). FGF-2 induced the nondirectional and directional migration of endothelial cells, which are inhibited by MMPs and plasmin inhibitors, and induced the secretion of matrix metalloproteinase-3 (MMP3) and MMP-9, but not MMP-l and MMP-2. FGF-2 also induced the secretion of the tissue inhibitor of metalloproteinase-l (TIMP-I), but not of TIMP- 2. Also, the pan-PKC inhibitor inhibited FGF-2-induced MMP-9 secretion. It is, therefore, suggested that FGF-2 induces the migration of cultured endothelial cells by means of increased MMPs and plasmin secretion. Furthermore, FGF-2 may increase MMP-9 secretion by activating the PKC pathway.

Transcriptional Profile and Cellular Effects on Time Course & Doses Treatment of Methylmercury using Human cDNA Microarray System

  • Kim, Youn-Jung;Yun, Hye-Jung;Kim, Eun-Young;Ryu, Jae-Chun
    • 한국환경독성학회:학술대회논문집
    • /
    • 한국환경독성학회 2003년도 추계국제학술대회
    • /
    • pp.176-176
    • /
    • 2003
  • Methylmercury is known to have devastating effects on the mammalian nervous system. When human neuroblastoma SH-SY5Y cells were treated with methylmercury at sublethal concentrations (6.25 uM), up-regulated genes (39) & down-regulated genes (19) were identified by human 8k cDNA microarray. These genes are related with microtubule process, signal transduction pathway and cell death (apoptosis), Apoptosis-associated genes, HSP70, CDK inhibitor 1, FOS-like antigen were up-regulated and microtubule related genes like villin and dynein down-regultaed. To confirm the presence of apoptosis in cultured SH-SY5Y cells treated 6.25 and 1 uM methylmercury, we applied Annexin V-FITC assay followed by flow cytometric measurements after 6 and 24h. Studies on transcriptional and molecular effect by methylmercury may provide an insight into the neurotoxic effects of methylmercury in human neuronal cells and a possibility to develop more efficient and exact monitoring system of heavy metals as ubiquitous environmental pollutants.

  • PDF

Requirement of Reactive Oxygen Species Generation in Apoptosis of MCF-7 Human Breast Carcinoma Cells Induced by Sanguinarine

  • Lim, Ji-Young;Lee, Yae-Lim;Lee, Hae-Rin;Choi, Woo-Young;Lee, Won-Ho;Choi, Yung-Hyun
    • Toxicological Research
    • /
    • 제23권3호
    • /
    • pp.215-221
    • /
    • 2007
  • Although sanguinarine, a benzophenanthridine alkaloid, possesses anti-cancer properties against several cancer cell lines, the molecular mechanisms by which it inhibits cell growth and induces apoptosis have not been clearly understood. In order to further explore the critical events leading to apoptosis in sanguinarine-treated MCF-7 human breast carcinoma cells, the following effects of sanguinarine on components of the mitochondrial apoptotic pathway were examined: generation of reactive oxygen species (ROS), alteration of the mitochondrial membrane potential (MMP), and the expression changes of Bcl-2 family proteins. We show that sanguinarine-induced apoptosis is accompanied by the generation of intracellular ROS and disruption of MMP as well as an increase in pro-apoptotic Bax expression and a decrease of anti-apoptotic Bcl-2 and Bcl-xL expression. The quenching of ROS generation with N-acetyl-L-cysteine, the ROS scavenger, protected the sanguinarine-elicited ROS generation, mitochondrial dysfunction, modulation of Bcl-2 family proteins, and apoptosis. Based on these results, we propose that the cellular ROS generation plays a pivotal role in the initiation of sanguinarine-triggered apoptotic death.

A Retinoid Antagonist Inhibits the Retinoic Acid Response Element that Located in the Promoter Region of the Cytomegalovirus

  • Lee, Mi-Ock;Ahn, Ju-Mi;Han, Sun-Young
    • Biomolecules & Therapeutics
    • /
    • 제6권3호
    • /
    • pp.276-282
    • /
    • 1998
  • Retinoids regulate a wide variety of biological processes such as cellular proliferation and differentiation in many cell types. They have also shown to stimulate replication of several viruses including human cytomegalovirus (CMV). Retinoid signalling pathway involves two distinct subfamilies of nuclear receptors, retinoic acid receptors (RARs) and retinoid X receptors (RXRs) that bind to specific retinoic acid response elements (RAREs) in the promoter regions of retinoid-target genes. Here, we characterized RAREs in the regulatory regions of the CMV and of the hepatitis B vi.us (HBV). The viral RAREs, i.e., CMV-RARE and HBV-RARE, are composed of two consensus RARE half-sites (A/GGGTCA) arranged as a direct repeat separated by 5-bp and 1-bp, respectively. The RAREs were activated by both RAR/RXR heterodimers and RXR homodimers in transient transfection experiments. We also found that COUP-TF$\alpha$ (chicken ovalbumin upstream promoter-transcription factor u) and COUP-TF$\beta$ repressed the retinoid response of the viral elements. Further we demonstrated that previously known retinoid antagonist, SRI 1330, repressed retinoid-induced transactivation of the CMV-RARE. These results implicate Vitamin A, it's nuclear receptors and COUP-TFs as important regulators of the CMV and HBV pathogenesis and the SRl1330 as potential negative modulator of such retinoid-dependent processes.

  • PDF