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Abstract
Stimulation of epidermal growth factor receptor
(EGFR) is essential in signaling pathway of tumor
cells. Thus, EGFR has intensely studied as an anti-
cancer target. We developed hologram quantitative
structure activity relationship (HQSAR) models for
data set which consists of tricyclic azepine deriva-
tives showing inhibitory activities for EGFR. The
optimal HQSAR model was generated with fragment
size of 6 to 7 while differentiating fragments having
different atom and connectivity. The model showed
cross-validated q2 value of 0.61 and non-cross-vali-
dated r2 value of 0.93. When the model was validat-
ed with an external set excluding one outlier, it gave
predictive r2 value of 0.43. The contribution maps
generated from this model were used to interpret
the atomic contribution of each atom to the overall
inhibition activity. This can be used to find more
efficient EGFR inhibitors.
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Anticancer drugs have been conventionally devel-
oped for the control of DNA synthesis and function
or cell mitosis1. Such cytotoxic drugs may have
drawbacks in their efficacy of cell death and in its
selectivity between malignant tumor cells and normal
cells1. A signaling pathway consists of three steps:
binding of a small ligand to an extracellular receptor,
transduction of an external signal into a cell, and
alteration of protein-protein interactions. This signal-
ing flow regulates all of cell behaviors like prolifera-
tion, growth, and differentiation. If the signaling
pathways fail to control normal cell proliferation and

survival, many cancers can appear due to that disrup-
tion2. Usually, the over-expression of special growth-
factor-receptor tyrosine kinases and their mutated
forms may result in the unrestrained activation of that
pathway3. Thus, the use of signaling pathways as
molecular targets can be a new gate to anticancer
drug development1.

Protein-tyrosine kinases (PTKs) have become
important targets for anticancer drugs because of
their role as regulators of intracellular signal-trans-
duction pathways4. EGFR (epidermal growth factor
receptor), a kind of the PTK family, is one of the
most intensively studied targets for anticancer drugs.
Stimulation of the EGFR signaling pathway in malig-
nant tumor cells can produce increased cell prolifera-
tion, angiogenesis, and metastasis, and decreased
apoptosis6. Once binding of an epidermal growth
factor (EGF) initiates the activation of the EGFR,
then the receptor can develop into a homodimer with
another EGFR monomer or a heterodimer with
different member of the erbB family, which consists
of four similar receptors. After dimerization, the in-
trinsic kinase activity is increased and tyrosine auto-
phosphorylation takes place6. EGF receptors are ex-
ceptional in that their stimulation of kinase actvity is
not from the activation loop autophosphorylation, but
from the generation of a cytoplasmic domain dimer.
So, autophosphorylated but monomeric EGF recep-
tors are not activated. Most of the tyrosine sites in the
EGF receptor exist in the carboxy-terminal region of
the receptor5. Furthermore, the activation loop of the
EGFR not having a phosphate group takes a structure
analogous to that of the kinase domain from the
insulin receptor which is autophosphorylated7.

EGFR-directed therapies have distinct effects on
the treatment of tumor cells so that various areas of
the EGFR have been used for the development of
inhibitors: “the extracellular ligand-binding domain,
the intracellular tyrosine kinase domain, the ligand,
or the synthesis of the EGFR from DNA”6. Accord-
ing to various target areas, there exist several EGFR-
targeted strategies: monoclonal antibodies, bispecific
antibodies, EGFR-TKIs (tyroskine kinase inhibitors),
recombinant vaccine, and antisense oligonucleotides6.
The ATP-binding pocket of tyroskine kinase domain
within EGFR can be a good target area for the design
of inhibitors suppressing the unregulated activation
of EGFR. A strategy using such a pocket with a small
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molecule is promising8.
Hologram quantitative structure-activity relation-

ship (HQSAR) is a relatively new method for struc-
ture-activity relationships which utilizes weighted 2D
fingerprints in conjunction with the PLS statistics.
HQSAR generates a predictive model of biological
activity with its predictive variables based on distinc-
tive fragment fingerprints (molecular holograms)9.
Generally, molecular function is resulted from its
structure; therefore, 2D fingerprint, converted repre-
sentation of a molecular substructure, can have pre-
diction power for a molecule10. HQSAR model can
predict biological activities of new compounds, and
the model also gives some indications about which
substituents or structures should be modified to in-
crease the activity of compounds9. Since the HQSAR
is so fast in model generation and do not need mole-
cular alignment, the method can be used for both
small and large data sets, and HQSAR can also sup-
port database searching9.

Smith et al. reported that oxazepine derivatives in-
hibit EGFR tyrosine kinase8. In this study, HQSAR9

technique has been applied to investigate the factors
affecting inhibitory activity of tricyclic azepine deri-
vatives.

HQSAR Model
To find good model from HQSAR analysis, we

examined the influence of the fragment distinction
and the fragment size on the important statistical
parameters. HQSAR investigation was carried out
using the following distinctions: atoms (A), bonds
(B), connections (Co), hydrogen atoms (H) and donor
and acceptor (DA). With the default fragment size (4-
7), some combinations of this distinction information
were taken into account as follows: A, A/B, A/B/Co,
A/B/Co/H, A/Co, Co, B/Co, and A/Co/DA. After
HQSAR analysis was accomplished using the 12
default hologram lengths of 53, 59, 61, 71, 83, 97,
151, 199, 257, 307, 353, and 401 bins for each
parameter set, the best models and its optimal number
of components (LV) were chosen based on the least
cross validated standard error SEcv. The results of
HQSAR analyses for the training data set using some
fragment distinction information are shown in Table
3. The best model was produced from fragment
distinction of atoms and connections, and the model
showed cross-validated r2 (q2) value of 0.572 and
non-cross-validated r2 value of 0.928. When only A
or A/B parameters were used as fragment distinction,
q2 values were 0.471 and 0.408, respectively; on the
other hand, when only connectivity used as fragment
distinction, q2 value was 0.572. This means that
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Table 1. Oxazepines as inhibitors of EGFR and their inhibi-
tion activities8.

Compound Ar X Y Z pIC50

1c 3-Br-Ph NH H H 6.52
2a 3-Me-Ph NH H H 5.13
2b 3-Ethynhyl-Ph NH H H 5.49
2c 4-Br-Ph NH H H 5.06
2d 4-F-Ph NH H H 5.15
2e 3-Cl-4-F-Ph NH H H 5.92
2f* 3-Cl-2-F-Ph NH H H 6.52
2g 5-Cl-2-F-Ph NH H H 5.96
2h* 2-Cl-4-F-Ph NH H H 5.47
2i* 6-Indazolyl NH H H 5.92
2j 2-Naphthyl NH H H 6.3
2k 6-Benzthiazolyl NH H H 5.25
2n 3-Br-Ph O H H 6.15
2o 3-Cl-4-F-Ph O H H 5.92
2p 3-Br-Ph O H Me 5.34
2q 3-Cl-4-F-Ph O H Me 4.97
2r 3-Br-Ph S H H 5.89
2s* 3-Cl-Ph S H H

Ar
X Z

N
N

NY O

O

O

Table 2. Thiazepines as inhibitors of EGFR and their inhi-
bition activities8.

Compound Ar X Y pIC50

3a 3-Br-Ph NH H 5.23
3b* 3-Cl-4-F-Ph NH H 5.09
3c 3-Cl-2-F-Ph NH H 4.2
3d* 6-Indazolyl NH H 4.85
3g 3-Cl-Ph NMe H 4.57
3h* 3-Br-Ph NH Me 4.51
3j 3-Br-4-Me-Ph NH Me 4.34
3m 2-Naphthyl NH Me 4.77
3n 5-Benzimidazolyl NH Me 4.84
3o* 6-Benzthiazolyl NH Me 4.82
3p 6-Indazolyl NH Me 4.61
3q 5-Indazolyl NH Me 4.79
3r* 3-Br-Ph O H 4.66
3s 3-Cl-2-F-Ph O H 4.71
3t 3-Br-Ph S H 5.8
3u* 3-Cl-Ph S H 5.54

Ar
X
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N
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O
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H



connectivity was more important than atoms or bonds
in this analysis, and when both atoms and connecti-
vity (A/Co) were used, the best model was introduc-
ed.

We attempted to find a model with better statistics
by changing fragment sizes, and analyses have been
repeated with different fragment sizes using the
previous best model’s fragment distinction parameter
(A/Co). The evaluated fragment sizes and their stati-
stical results are shown in Table 4. Although holo-
gram length of the best model was not changed, two
fragment sizes (5-7, 6-7) showing better q2 values
than the previous best model were generated, and the
model with its q2 value (0.612) and r2 value (0.931)
was the best model found.

External test set (marked asterisk in Table 1, 2) was
used to make sure the prediction power of the best
model made from the 24 training set molecules. The
test set’s pIC50 values were calculated, and the
predictive r2 value was 0.43 when one outlier data of

2f compound was excluded. The observed and pre-
dictive activities of both training set and test set were
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Table 5. Observed versus predicted activities (pIC50) with
residuals by HQSAR.

Compound Observed Predicted Residual

Training
1c 6.52 6.2 0.32
2a 5.13 5.03 0.1
2b 5.49 5.95 -0.46
2c 5.06 5.15 -0.09
2d 5.15 5.25 -0.1
2e 5.92 5.93 -0.01
2g 5.96 5.73 0.23
2j 6.3 6.24 0.06
2k 5.25 5.43 -0.18
2n 6.15 6 0.15
2o 5.92 5.79 0.13
2p 5.34 5.42 -0.08
2q 4.97 4.97 0
2r 5.89 5.95 -0.06
3a 5.23 5.1 0.13
3c 4.2 4.29 -0.09
3g 4.57 4.53 0.04
3m 4.34 4.32 0.02
3n 4.77 5.08 -0.31
3p 4.84 4.74 0.1
3q 4.61 4.55 0.06
3s 4.79 4.76 0.03
3t 4.71 4.59 0.12

Test
2f 6.52 5.117 1.403
2h 5.47 5.879 -0.409
2i 5.92 6.519 -0.599
2s 6 5.963 0.037
3b 5.09 4.628 0.462
3d 4.85 4.857 -0.007
3h 4.51 4.786 -0.276
3o 4.82 4.268 0.552
3r 4.66 5.008 -0.348
3u 5.54 5.855 -0.315
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Figure 1. Plot of observed versus predictive activities
(pIC50).

Table 3. HQSAR analyses for various fragment distinctions
using default fragment size (4-7); (LVmax==8), model vali-
dation by LOO (Leave-One-Out).

Fragment
Distinction

q2 SEcv r2 SEE LV Length

A 0.471 0.515 0.738 0.362 4 97
A/B 0.408 0.544 0.741 0.36 4 199
A/B/Co 0.565 0.466 0.942 0.17 4 83
A/B/Co/H 0.558 0.497 0.956 0.157 6 59
A/Co 0.576 0.461 0.928 0.189 4 71
Co 0.572 0.476 0.937 0.183 5 151
B/Co 0.468 0.503 0.889 0.23 3 199
A/Co/DA 0.383 0.529 0.508 0.472 2 71

Table 4. HQSAR analysis for the influence of various
fragment sizes using the best fragment distinction (A/Co),
LVmax (4).

Fragment
Size

q2 SEcv r2 SEE LV Length

1-2 0.306 0.548 0.427 0.498 1 97
1-3 0.470 0.502 0.781 0.323 3 53
1-10 0.435 0.494 0.554 0.439 1 83
2-10 0.436 0.494 0.555 0.439 1 83
3-9 0.432 0.496 0.544 0.444 1 83
3-10 0.438 0.556 0.556 0.438 1 83
4-7 0.576 0.461 0.928 0.189 4 71
5-7 0.585 0.456 0.928 0.191 4 71
5-10 0.436 0.494 0.554 0.439 1 83
6-7 0.612 0.441 0.931 0.185 4 71
7-9 0.438 0.493 0.547 0.443 1 71
8-9 0.430 0.497 0.548 0.442 1 53
9-10 0.446 0.490 0.562 0.435 1 97s



shown in Table 5. Figure 1 shows the plot diagram of
observed versus predicted activities of both training
set and test set.

Atomic Contribution
In HQSAR, contribution map represents one model

graphically and the color of each atom in the map
reflects the contribution of that atom to the com-
pound’s inhibitory activity. Colors at the red end of
the spectrum (red, red orange, and orange) reflect
poor (or negative) contributions, while colors at the
green end (yellow, green blue, and blue) reflect favo-
rable (positive) contributions. White colors reflect
intermediate contributions.

Figure 2 shows the atomic contribution of the
model compound (1c) to its inhibition activity. It
indicates that pyrimidine ring mainly contributes the
overall activity of the compound. This corresponds to
the bad effect resulted from the methyl substitution of
pyrimidine ring. When para position of aniline ring
was substituted to halogen group, it did not give any
contribution to the bioactivity (refer to Figures 2, 3).

NH group of the 7-membered ring (of the oxazepine
and thiazepine) is also important for good activity
because its substitution to methyl showed significant
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Figure 2. Contribution map of compound 1c.

Figure 6. Contribution map of compound 3p.Figure 3. Contribution map of compound 2d.

Figure 4. Contribution map of 2n.

Figure 5. Contribution map of compound 3c.



decrease of the model compound (Figure 6). Figure 4
indicates that NH-group of aniline ring can be
changed to oxygen without significant decrease of the
inhibition activity. Generally, thiazepine ring repre-
sents considerable decrease in activity than oxazepine
ring because sulfur atom in thiazepine might have
some steric hindrance to binding of model com-
pound (Refer to Figures 5, 6).

Discussion

HQSAR analysis was performed to investigate the
2D QSAR of tricyclic azepine derivatives as EGFR
inhibitors. When atoms and connectivity information
were used, the best model was introduced, and it was
further optimized with their fragment sizes changed.
The optimal model showed q2 value of 0.612 and r2

value of 0.928. Due to structural variety of the data
set used in this study, this model did not show high
prediction ability for the external data set, however,
the model was statistically robust with a good ex-
planatory power. The contribution maps generated
from this model showed that pyrimidine ring and
NH-group of azepine ring are critical for good inhibi-
tion activity. Generally, oxazepine ring was better
than thiazepine ring in its biological activity. This an-
alysis will be useful to find promising analogues for
EGFR inhibitors.

Methods

Data Sets
Thirty-four tricyclic azepine derivatives, a subset of

the dataset published by Smith et al. with two
different scaffolds8, were used for the HQSAR an-
alysis. Table 1 and 2 summarizes the structures of the
molecules and their inhibitory activities (pIC50 values,
µM). In this dataset, twenty-four compounds were
selected as a training set to generate QSAR models
and the other ten compounds (Table 1-2 marked with
asterisk) were used as a test set for model validation.
The inhibitory activity values were transformed from
IC50 values to pIC50 (-log IC50) values by scaling, then
they were evaluated as statistical variables in the
QSAR investigations.

HQSAR Analysis
HQSAR analysis requires input molecular struc-

tures and their biological activities, and it proceeds to
the generation of molecular holograms and model
generation. HQSAR analysis consists of three main
activities: the generation of structural fragments for

all molecules in the training set, derivation of the
molecular holograms by hashing to defined hologram
lengths, and generation of HQSAR models following
its validation10-12.

The input molecules were separated into all possi-
ble structural fragments including branched, cyclic,
and overlapping fragments and their atom sizes range
from minimum (M) to maximum (N). Molecular
hologram was derived from the modification of bit
string and it consisted of an array of integers indica-
ting how many times each fragment was put into each
bin. Since all molecular structures should be encoded
into molecular holograms, all structural fragments
were expressed as SLN strings11, and they were trans-
formed into pseudo-random integers by CRC (Cyclic
Redundancy Check) algorithm. These numbers were
hashed into hologram array of the specified length (L)
in the range 1 to L. With all generated fragments
hashed into hologram array, this hologram array con-
tains bin occupancies which are the descriptor vari-
ables. The use of hashing reduces the size of mole-
cular hologram and decreases the computation time
of HQSAR, and it is necessary because in some cases
there are more unique fragments than fingerprint
positions (bins). However, hashing also makes ‘frag-
ment collision’ problem, so different unique frag-
ments can hash into the same bin, which is related to
chance correlation. To reduce the fragment collision,
hologram lengths (the value of L) were selected to be
prime numbers (default values of which are 53, 59,
61, 71, 83, 97, 151, 199, 257, 307, 353, and 401). As
one hologram was created for one molecule, then all
the other holograms corresponding to remaining
compounds were generated by repeating previous
process. In the HQSAR procedure, fragment sizes
(M, N) and hologram length (L) mainly control the
creation of molecular hologram, so many combina-
tions of fragment sizes and hologram lengths were
used to find the set of parameters (M, N, and L)
which resulted in the best HQSAR. HQSAR models
were generated from biological activities and mole-
cular holograms in conjunction with the PLS (Partial
Least Square) method. Cross-validation with leave
one out method was also performed to determine the
number of components which gave the best refined
model. From the stored PLS results, best hologram
length and their fragment sizes were chosen and
reported. Selected optimal model produced a stati-
stical equation relating the molecular hologram bin
values to the biological activity of each compound in
the data set.

Activityi==c0++∑Lcilxil

Where xil is the occupancy value of the molecular
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hologram of compound i at position l, cil is the coef-
ficient for that bin (position) derived from the PLS
analysis, L is the length of the hologram, Activity is
the biological activity, and c0 is a constant. PLS solu-
tion coefficients from the optimally selected struc-
ture-activity relationship were used to predict the
activities of test compounds and to visualize relative
contribution of each molecule of data set.

HQSAR Contribution Maps
In contribution map, the result of HQSAR analysis

was shown as a color-coded structure diagram in
which each atom had the color corresponding to the
intensity of its contribution to the molecule’s overall
activity12. If one atom had weak contribution, it was
displayed by the colors of red, red-orange and orange
which were located at the red end of color spectrum.
On the contrary, an atom with strong contribution
was drawn by the colors of yellow, green-blue and
green which were located at the green end of the
color spectrum. Intermediate contributions were de-
picted in white color.

The atomic contribution for each atom needs cal-
culation using PLS coefficients and the hologram of
optimal model. When several fragments are position-
ed in a fingerprint bin by hashing, then every atom of
them will take the same part in the PLS coefficient
because there does not exist the way to discriminate
its contribution to the statistic. A weighting value for
each atom equals to the PLS coefficient divided by
the number of atoms in the fragments pertaining to
the location. In each position in the fingerprint, all
atoms get their weighting value from such a pro-
cedure, so individual atoms will have received wei-
ghts from many different fingerprint positions. Each
atom get its contribution color scaled from the mini-
mum and maximum weighting values of whole mol-
ecules of the data set12.

Predictive r Squared (r2 pred)
To validate the derived HQSAR models, biological

activities of an external test set were predicted using
models derived from the training set. By predicting
the biological activities of an external test set, we
tried to check the validity of the selected HQSAR
model which is derived from the training set. Pre-
dictive r2 value was used as an expression of the
prediction power of the model and it is similar to

cross-validated r2 (q2). This predictive r2 was calculat-
ed by next formula10

r2
pred==(SD-PRESS) / SD

where SD was the sum of squared deviation between
the biological activities of the test set molecule and
the mean activities of the training set molecules and
PRESS was the sum of squared deviations between
the observed and the predicted activities of the test
molecules.
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