• 제목/요약/키워드: Cellular pathway

검색결과 932건 처리시간 0.032초

Gene Expression Profiling of Human Bronchial Epithelial (BEAS-2B) Cells Treated with Nitrofurantoin, a Pulmonary Toxicant

  • Kim, Youn-Jung;Song, Mee;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제3권4호
    • /
    • pp.222-230
    • /
    • 2007
  • Some drugs may be limited in their clinical application due to their propensity towards their adverse effects. Toxicogenomic technology represents a useful approach for evaluating the toxic properties of new drug candidates early in the drug discovery process. Nitrofurantoin (NF) is clinical chemotherapeutic agent and antimicrobial and used to treatment of urinary tract infections. However, NF has been shown to result in pulmonary toxic effects. In this research, we revealed the changing expression gene profiles in BEAS-2B, human bronchial epithelial cell line, exposed to NF by using human oligonucleotide chip. Through the clustering analysis of gene expression profiles, we identified 136 up-regulated genes and 379 down-regulated genes changed by more than 2-fold by NF. This study identifies several interesting targets and functions in relation to NF-induced toxicity through a gene ontology analysis method including biological process, cellular components, molecular function and KEGG pathway.

Alfalfa xenomiR-162 targets G protein subunit gamma 11 to regulate milk protein synthesis in bovine mammary epithelial cells

  • Guizhi Meng;Hongjuan Duan;Jingying Jia;Baobao Liu;Yun Ma;Xiaoyan Cai
    • Animal Bioscience
    • /
    • 제37권3호
    • /
    • pp.509-521
    • /
    • 2024
  • Objective: It was shown that microRNAs (miRNAs) play an important role in milk protein synthesis. However, the post-transcriptional regulation of casein expression by exogenous miRNA (xeno-miRNAs) in ruminants remains unclear. This study explores the regulatory roles of alfalfa xeno-miR162 on casein synthesis in bovine mammary epithelial cells (bMECs). Methods: The effects of alfalfa xenomiR-162 and G protein subunit gamma 11 (GNG11) on proliferation and milk protein metabolism of bMECs were detected by 5-Ethynyl-2'-Deoxyuridine (EdU) staining, flow cytometry, cell counting kit-8 (CCK-8), enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot. Dual-luciferase reporter assay was used to verify the targeting relationship between GNG11 and xenomiR-162. Results: Results showed that over-expression of xenomiR-162 inhibited cell proliferation but promoted apoptosis, which also up-regulated the expression of several casein coding genes, including CSN1S1, CSN1S2, and CSN3, while decreasing the expression of CSN2. Furthermore, the targeting relationship between GNG11 and xenomiR-162 was determined, and it was confirmed that GNG11 silencing also inhibited cell proliferation but promoted apoptosis and reduced the expression of casein coding genes and genes related to the mammalian target of rapamycin (mTOR) pathway. Conclusion: Alfalfa xenomiR-162 appears to regulate bMECs proliferation and milk protein synthesis via GNG11 in the mTOR pathway, suggesting that this xeno-miRNA could be harnessed to modulate CSN3 expression in dairy cows, and increase κ-casein contents in milk.

The Gene Expression Profile of LPS-stimulated Microglial Cells

  • Sohn, Sung-Hwa;Ko, Eun-Jung;Kim, Sung-Hoon;Kim, Yang-Seok;Shin, Min-Kyu;Hong, Moo-Chang;Bae, Hyun-Su
    • Molecular & Cellular Toxicology
    • /
    • 제5권2호
    • /
    • pp.147-152
    • /
    • 2009
  • This study was conducted to evaluate the inflammatory mechanisms of LPS-stimulated BV-2 microglial cells. The inflammation mechanism was evaluated in BV-2 cells with or without LPS treated using the Affymetrix microarray analysis system. The microarray analysis revealed that B cell receptor signaling pathway, cytokine-cytokine receptor interaction, Jak-STAT signaling pathway, MAPK signaling pathway, Neuro-active ligand-receptor interaction, TLR signaling path-way, and T cell receptor signaling pathway-related genes were up-regulated in LPS stimulated BV-2 cells. Selected genes were validated using real time RTPCR. These results can help an effective therapeutic approach to alleviating the progression of neuro-in-flammatory diseases.

Exploiting the Fanconi Anemia Pathway for Targeted Anti-Cancer Therapy

  • Jo, Ukhyun;Kim, Hyungjin
    • Molecules and Cells
    • /
    • 제38권8호
    • /
    • pp.669-676
    • /
    • 2015
  • Genome instability, primarily caused by faulty DNA repair mechanisms, drives tumorigenesis. Therapeutic interventions that exploit deregulated DNA repair in cancer have made considerable progress by targeting tumor-specific alterations of DNA repair factors, which either induces synthetic lethality or augments the efficacy of conventional chemotherapy and radiotherapy. The study of Fanconianemia (FA), a rare inherited blood disorder and cancer predisposition syndrome, has been instrumental in understanding the extent to which DNA repair defects contribute to tumorigenesis. The FA pathway functions to resolve blocked replication forks in response to DNA interstrand cross-links (ICLs), and accumulating knowledge of its activation by the ubiquitin-mediated signaling pathway has provided promising therapeutic opportunities for cancer treatment. Here, we discuss recent advances in our understanding of FA pathway regulation and its potential application for designing tailored therapeutics that take advantage of deregulated DNA ICL repair in cancer.

Apelin-APJ Signaling: a Potential Therapeutic Target for Pulmonary Arterial Hypertension

  • Kim, Jongmin
    • Molecules and Cells
    • /
    • 제37권3호
    • /
    • pp.196-201
    • /
    • 2014
  • Pulmonary arterial hypertension (PAH) is a progressive disease characterized by the vascular remodeling of the pulmonary arterioles, including formation of plexiform and concentric lesions comprised of proliferative vascular cells. Clinically, PAH leads to increased pulmonary arterial pressure and subsequent right ventricular failure. Existing therapies have improved the outcome but mortality still remains exceedingly high. There is emerging evidence that the seven-transmembrane G-protein coupled receptor APJ and its cognate endogenous ligand apelin are important in the maintenance of pulmonary vascular homeostasis through the targeting of critical mediators, such as Kr$\ddot{u}$ppel-like factor 2 (KLF2), endothelial nitric oxide synthase (eNOS), and microRNAs (miRNAs). Disruption of this pathway plays a major part in the pathogenesis of PAH. Given its role in the maintenance of pulmonary vascular homeostasis, the apelin-APJ pathway is a potential target for PAH therapy. This review highlights the current state in the understanding of the apelin-APJ axis related to PAH and discusses the therapeutic potential of this signaling pathway as a novel paradigm of PAH therapy.

The p53-p21Cip1/WAF1 Pathway Is Necessary for Cellular Senescence Induced by the Inhibition of Protein Kinase CKII in Human Colon Cancer Cells

  • Kang, Ji-Young;Kim, Jin Joo;Jang, Seok Young;Bae, Young-Seuk
    • Molecules and Cells
    • /
    • 제28권5호
    • /
    • pp.489-494
    • /
    • 2009
  • We have previously shown that the down-regulation of protein kinase CKII activity is tightly associated with cellular senescence of human fibroblast IMR-90 cells. Here, we examined the roles of p53 and $p21^{Cip1/WAF1}$ in senescence development induced by CKII inhibition using wild-type, isogenic p53-/- and isogenic p21-/- HCT116 human colon cancer cell lines. A senescent marker appeared after staining for senescence-associated ${\beta}$-galactosidase activity in wild-type HCT116 cells treated with CKII inhibitor or $CKII{\alpha}$ siRNA, but this response was almost abolished in p53- or $p21^{Cip1/WAF1}$-null cells. Increased cellular levels of p53 and $p21^{Cip1/WAF1}$ protein occurred with the inhibition of CKII. CKII inhibition upregulated p53 and $p21^{Cip1/WAF1}$ expression at post-transcriptional level and transcription level, respectively. RB phosphorylation significantly decreased in cells treated with CKII inhibitor. Taken together, this study shows that the activation of the $p53-p21^{Cip1/WAF1}$ pathway acts as a major mediator of cellular senescence induced by CKII inhibition.

Cyclin-Dependent Kinase Inhibitor 2A is a Key Regulator of Cell Cycle Arrest and Senescence in Endothelial Colony-Forming Cells in Moyamoya Disease

  • Seung Ah Choi;Youn Joo Moon;Eun Jung Koh;Ji Hoon Phi;Ji Yeoun Lee;Kyung Hyun Kim;Seung-Ki Kim
    • Journal of Korean Neurosurgical Society
    • /
    • 제66권6호
    • /
    • pp.642-651
    • /
    • 2023
  • Objective : Endothelial colony-forming cells (ECFCs) have been reported to play an important role in the pathogenesis of moyamoya disease (MMD). We have previously observed stagnant growth in MMD ECFCs with functional impairment of tubule formation. We aimed to verify the key regulators and related signaling pathways involved in the functional defects of MMD ECFCs. Methods : ECFCs were cultured from peripheral blood mononuclear cells of healthy volunteers (normal) and MMD patients. Low-density lipoproteins uptake, flow cytometry, high content screening, senescence-associated β-galactosidase, immunofluorescence, cell cycle, tubule formation, microarray, real-time quantitative polymerase chain reaction, small interfering RNA transfection, and western blot analyses were performed. Results : The acquisition of cells that can be cultured for a long time with the characteristics of late ECFCs was significantly lower in the MMD patients than the normal. Importantly, the MMD ECFCs showed decreased cellular proliferation with G1 cell cycle arrest and cellular senescence compared to the normal ECFCs. A pathway enrichment analysis demonstrated that the cell cycle pathway was the major enriched pathway, which is consistent with the results of the functional analysis of ECFCs. Among the genes associated with the cell cycle, cyclin-dependent kinase inhibitor 2A (CDKN2A) showed the highest expression in MMD ECFCs. Knockdown of CDKN2A in MMD ECFCs enhanced proliferation by reducing G1 cell cycle arrest and inhibiting senescence through the regulation of CDK4 and phospho retinoblastoma protein. Conclusion : Our study suggests that CDKN2A plays an important role in the growth retardation of MMD ECFCs by inducing cell cycle arrest and senescence.

Thermal Acclimative Changes in the Different Lipid Fractions Composition of Fat Body of Eri-Silkworm, Philosamia Ricini (Ward.)

  • Singh, G.B.;Singh, M.K.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제4권1호
    • /
    • pp.13-17
    • /
    • 2002
  • Present communication deals with quantitative determination of total lipid, triglycerides, total free fatty acids, phospholipids and total cholesterol in the fat body tissue of the silkworm adapted to low and high temperatures. At the end of spinning process is characterized by a marked cellular reorganization of the different lipid fraction of the fat body irrespective of thermal acclimation. Accordingly, the per cent composition of triglycerides of the total lipid is increased accompanied by a corresponding decrease in free fatty acids, phospholipids and cholesterol.

Proline Metabolism in Neurological and Psychiatric Disorders

  • Yao, Yuxiao;Han, Weiping
    • Molecules and Cells
    • /
    • 제45권11호
    • /
    • pp.781-788
    • /
    • 2022
  • Proline plays a multifaceted role in protein synthesis, redox balance, cell fate regulation, brain development, and other cellular and physiological processes. Here, we focus our review on proline metabolism in neurons, highlighting the role of dysregulated proline metabolism in neuronal dysfunction and consequently neurological and psychiatric disorders. We will discuss the association between genetic and protein function of enzymes in the proline pathway and the development of neurological and psychiatric disorders. We will conclude with a potential mechanism of proline metabolism in neuronal function and mental health.