DOI QR코드

DOI QR Code

The p53-p21Cip1/WAF1 Pathway Is Necessary for Cellular Senescence Induced by the Inhibition of Protein Kinase CKII in Human Colon Cancer Cells

  • Kang, Ji-Young (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Kim, Jin Joo (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Jang, Seok Young (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Bae, Young-Seuk (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University)
  • Received : 2009.05.06
  • Accepted : 2009.09.07
  • Published : 2009.11.30

Abstract

We have previously shown that the down-regulation of protein kinase CKII activity is tightly associated with cellular senescence of human fibroblast IMR-90 cells. Here, we examined the roles of p53 and $p21^{Cip1/WAF1}$ in senescence development induced by CKII inhibition using wild-type, isogenic p53-/- and isogenic p21-/- HCT116 human colon cancer cell lines. A senescent marker appeared after staining for senescence-associated ${\beta}$-galactosidase activity in wild-type HCT116 cells treated with CKII inhibitor or $CKII{\alpha}$ siRNA, but this response was almost abolished in p53- or $p21^{Cip1/WAF1}$-null cells. Increased cellular levels of p53 and $p21^{Cip1/WAF1}$ protein occurred with the inhibition of CKII. CKII inhibition upregulated p53 and $p21^{Cip1/WAF1}$ expression at post-transcriptional level and transcription level, respectively. RB phosphorylation significantly decreased in cells treated with CKII inhibitor. Taken together, this study shows that the activation of the $p53-p21^{Cip1/WAF1}$ pathway acts as a major mediator of cellular senescence induced by CKII inhibition.

Keywords

Acknowledgement

Supported by : Kyungpook National University

References

  1. Ahmad, K.A., Wang, G., and Ahmed, K. (2006). Intracellular hydrogen peroxide production is an upstream event in apoptosis induced by down-regulation of casein kinase 2 in prostate cancer cells. Mol. Cancer Res. 4, 331-338 https://doi.org/10.1158/1541-7786.MCR-06-0073
  2. Brown, J.P., Wei, W., and Sedivy, J.M. (1997). Bypass of senescence after disruption of $p21^{CIP1/WAF1} $ gene in normal diploid human fibroblasts. Science 277, 831-834 https://doi.org/10.1126/science.277.5327.831
  3. Bunz, F., Dutriaux, A., Lengauer, C., Waldman, T., Zhou, S., Brown, J.P., Sedivy, J.M., Kinzler, K.W., and Vogelstein, B. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282, 1497-1501 https://doi.org/10.1126/science.282.5393.1497
  4. Daya-Makin, M., Sanghera, J.S., Mogentale, T.L., Lipp, M., Parchomchuk, J., Hogg, J.C., and Pelech, S.L. (1994). Activation of a tumor-associated protein kinase ($p40^{TAK{$) and casein kinase 2 in human squamous cell carcinomas and adenocarcinomas of the lung. Cancer Res. 54, 2262-2268
  5. Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E.E., Linskens, M., Rubelj, I., Pereira-Smith, O., et al. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA 92, 9363-9367 https://doi.org/10.1073/pnas.92.20.9363
  6. Faust, R.A., Gapany, M., Tristani, P., Davis, A., Adams, G.L., and Ahmed, K. (1996). Elevated protein kinase CK2 activity in chromatin of head and neck tumors: association with malignant transformation. Cancer Lett. 101, 31-35 https://doi.org/10.1016/0304-3835(96)04110-9
  7. Hanna, D.E., Rethinaswamy, A., and Glover, C.V. (1995). Casein kinase II is required for cell cycle progression during G1 and G2/M in Saccharomyces cerevisiae. J. Biol. Chem. 270, 25905- 25914 https://doi.org/10.1074/jbc.270.43.25905
  8. Harper, J.W., Adami, G.R., Wei, N., Keyomarsi, K., and Elledge, S.J. (1993). The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805-816 https://doi.org/10.1016/0092-8674(93)90499-G
  9. Hjerrild, M., Milne, D., Dumaz, N., Hay, T., Issinger, O.G., and Meek, D. (2001). Phosphorylation of murine double minute clone 2 (MDM2) protein at serine-267 by protein kinase CK2 in vitro and in cultured cells. Biochem. J. 355, 347-356 https://doi.org/10.1042/0264-6021:3550347
  10. Horn, H.F., and Vousden, K.H. (2007). Coping with stress: multiple ways to activate p53. Oncogene 26, 1306-1316 https://doi.org/10.1038/sj.onc.1210263
  11. Kim, E.K., Kang, J.Y., Rho, Y.H., Kim, Y.S., Kim, D.S., and Bae, Y.S. (2009). Silencing of the CK//$\alpha$ and CK//$\alpha$' genes during cellular senescence is mediated by DNA methylation. Gene 431, 55-60 https://doi.org/10.1016/j.gene.2008.10.020
  12. Kitagawa, K., Kotake, Y., and Kitagawa, M. (2009). Ubiquitinmediated control of oncogene and tumor suppressor gene products. Cancer Sci. 100, 1374-1381
  13. Kubbutat, M.H., Jones, S.N., and Vousden, K.H. (1997). Regulation of p53 stability by Mdm2. Nature 387, 299-303 https://doi.org/10.1038/387299a0
  14. Litchfield, D.W. (2003). Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem. J. 369, 1-15 https://doi.org/10.1042/BJ20021469
  15. Lorenz, P., Pepperkok, R., Ansorge, W., and Pyerin, W. (1993). Cell biological studies with monoclonal and polyclonal antibodies against human casein kinase II subunit β demonstrate participation of the kinase in mitogenic signaling. J. Biol. Chem. 268, 2733-2739
  16. Meek, D.W., Simon, S., Kikkawa, U., and Eckhart, W. (1990). The p53 tumour suppressor protein is phosphorylated at serine 389 by casein kinase II. EMBO J. 9, 3253-3260
  17. Munstermann, U., Fritz, G., Seitz, G., Lu, Y.P., Schneider, H.R., and Issinger, O.G. (1990). Casein kinase II is elevated in solid human tumours and rapidly proliferating non-neoplastic tissue. Eur. J. Biochem. 189, 251-257 https://doi.org/10.1111/j.1432-1033.1990.tb15484.x
  18. Niefind, K., Guerra, B., Pinna, L.A., Issinger, O.G., and Schomburg, D. (1998). Crystal structure of human protein kinase CK2: insights into basic properties of the CK2 holoenzyme. EMBO J. 17, 2451-2462 https://doi.org/10.1093/emboj/17.9.2451
  19. Orlandini, M., Semplici, F., Ferruzzi, R., Meggio, F., Pinna, L.A., and Oliviero, S. (1998). Protein kinase CK2$\alpha$' is induced by serum as a delayed early gene and cooperates with Ha-ras in fibroblast transformation. J. Biol. Chem. 273, 21291-21297 https://doi.org/10.1074/jbc.273.33.21291
  20. Pepperkok, R., Lorenz, P., Ansorge, W., and Pyerin, W. (1994). Casein kinase II is required for transition of G0/G1, early G1, and G1/S phases of the cell cycle. J. Biol. Chem. 269, 6986-6991
  21. Pinna, L.A. (1990). Casein kinase 2: an 'eminence grise' in cellular regulation? Biochim. Biophys. Acta 1054, 267-284 https://doi.org/10.1016/0167-4889(90)90098-X
  22. Ryu, S.-W., Woo, J.H., Kim, Y.-H., Lee, Y.-S., Park, J.W., and Bae, Y.-S. (2006). Down-regulation of protein kinase CKII is associated with cellular senescence. FEBS Lett. 580, 988-994 https://doi.org/10.1016/j.febslet.2006.01.028
  23. Sarno, S., Moro, S., Meggio, F., Zagotto, G., Ghisellini, P., Battistutta, R., Zanotti, G., and Pinna, L.A. (2002). Toward the rational design of protein kinase casein kinase-2 inhibitors. Pharmacol. Ther. 93, 159-168 https://doi.org/10.1016/S0163-7258(02)00185-7
  24. Seldin, D.C., and Leder, P. (1995). Casein kinase IIα transgeneinduced murine lymphoma: relation to theileriosis in cattle. Science 267, 894-897 https://doi.org/10.1126/science.7846532
  25. Stein, G.H., Drullinger, L.F., Soulard, A., and Dulic, V. (1999). Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. Mol. Cell. Biol. 19, 2109-2117 https://doi.org/10.1128/MCB.19.3.2109
  26. Waldman, T., Kinzler, K.W., and Vogelstein, B. (1995). p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res. 55, 5187-5190
  27. Zandomeni, R.O. (1989). Kinetics of inhibition by 5,6-dichloro-1-β Dribofuranosylbenzimidazole on calf thymus casein kinase II. Biochem. J. 262, 469-473 https://doi.org/10.1042/bj2620469

Cited by

  1. Ataxia Telangiectasia Mutated (ATM)-mediated DNA Damage Response in Oxidative Stress-induced Vascular Endothelial Cell Senescence vol.285, pp.38, 2010, https://doi.org/10.1074/jbc.m110.125138
  2. NEDD8-Targeting Drug MLN4924 Elicits DNA Rereplication by Stabilizing Cdt1 in S Phase, Triggering Checkpoint Activation, Apoptosis, and Senescence in Cancer Cells vol.70, pp.24, 2009, https://doi.org/10.1158/0008-5472.can-10-2062
  3. Caffeine inhibits cell proliferation and regulates PKA/GSK3β pathways in U87MG human glioma cells vol.31, pp.3, 2009, https://doi.org/10.1007/s10059-011-0027-5
  4. Differential expression of extracellular matrix proteins in senescent and young human fibroblasts: A comparative proteomics and microarray study vol.32, pp.1, 2009, https://doi.org/10.1007/s10059-011-0064-0
  5. Hepatitis B x-interacting protein induces HepG2 cell proliferation through activation of the phosphatidylinositol 3-kinase/Akt pathway vol.236, pp.1, 2009, https://doi.org/10.1258/ebm.2010.010179
  6. The tumor suppressor PTEN interacts with p53 in hereditary cancer vol.44, pp.6, 2009, https://doi.org/10.3892/ijo.2014.2377
  7. Phospholipase D2 downregulation induces cellular senescence through a reactive oxygen species-p53-p21Cip1/WAF1 pathway vol.588, pp.17, 2009, https://doi.org/10.1016/j.febslet.2014.07.009
  8. p53 suppresses stress-induced cellular senescence via regulation of autophagy under the deprivation of serum vol.11, pp.2, 2009, https://doi.org/10.3892/mmr.2014.2853
  9. Novel Pactamycin Analogs Induce p53 Dependent Cell-Cycle Arrest at S-Phase in Human Head and Neck Squamous Cell Carcinoma (HNSCC) Cells vol.10, pp.5, 2009, https://doi.org/10.1371/journal.pone.0125322
  10. MicroRNA Regulation of Oxidative Stress-Induced Cellular Senescence vol.2017, pp.None, 2017, https://doi.org/10.1155/2017/2398696
  11. Role of phospholipase D in the lifespan of Caenorhabditis elegans vol.50, pp.4, 2009, https://doi.org/10.1038/s12276-017-0015-8
  12. Defect of SIRT1-FoxO3a axis is associated with the production of reactive oxygen species during protein kinase CK2 downregulation-mediated cellular senescence and nematode aging vol.52, pp.4, 2009, https://doi.org/10.5483/bmbrep.2019.52.4.156
  13. Dephosphorylation of p53 Ser 392 Enhances Trimethylation of Histone H3 Lys 9 via SUV39h1 Stabilization in CK2 Downregulation-Mediated Senescence vol.42, pp.11, 2009, https://doi.org/10.14348/molcells.2019.0018
  14. MicroRNA and ROS Crosstalk in Cardiac and Pulmonary Diseases vol.21, pp.12, 2020, https://doi.org/10.3390/ijms21124370
  15. CK2 Down-Regulation Increases the Expression of Senescence-Associated Secretory Phenotype Factors through NF-κB Activation vol.22, pp.1, 2009, https://doi.org/10.3390/ijms22010406