• Title/Summary/Keyword: Cellular pathway

Search Result 932, Processing Time 0.031 seconds

A New Insight of Salt Stress Signaling in Plant

  • Park, Hee Jin;Kim, Woe-Yeon;Yun, Dae-Jin
    • Molecules and Cells
    • /
    • v.39 no.6
    • /
    • pp.447-459
    • /
    • 2016
  • Many studies have been conducted to understand plant stress responses to salinity because irrigation-dependent salt accumulation compromises crop productivity and also to understand the mechanism through which some plants thrive under saline conditions. As mechanistic understanding has increased during the last decades, discovery-oriented approaches have begun to identify genetic determinants of salt tolerance. In addition to osmolytes, osmoprotectants, radical detoxification, ion transport systems, and changes in hormone levels and hormone-guided communications, the Salt Overly Sensitive (SOS) pathway has emerged to be a major defense mechanism. However, the mechanism by which the components of the SOS pathway are integrated to ultimately orchestrate plant-wide tolerance to salinity stress remains unclear. A higher-level control mechanism has recently emerged as a result of recognizing the involvement of GIGANTEA (GI), a protein involved in maintaining the plant circadian clock and control switch in flowering. The loss of GI function confers high tolerance to salt stress via its interaction with the components of the SOS pathway. The mechanism underlying this observation indicates the association between GI and the SOS pathway and thus, given the key influence of the circadian clock and the pathway on photoperiodic flowering, the association between GI and SOS can regulate growth and stress tolerance. In this review, we will analyze the components of the SOS pathways, with emphasis on the integration of components recognized as hallmarks of a halophytic lifestyle.

Reconstruction and Exploratory Analysis of mTORC1 Signaling Pathway and Its Applications to Various Diseases Using Network-Based Approach

  • Buddham, Richa;Chauhan, Sweety;Narad, Priyanka;Mathur, Puniti
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.365-377
    • /
    • 2022
  • Mammalian target of rapamycin (mTOR) is a serine-threonine kinase member of the cellular phosphatidylinositol 3-kinase (PI3K) pathway, which is involved in multiple biological functions by transcriptional and translational control. mTOR is a downstream mediator in the PI3K/Akt signaling pathway and plays a critical role in cell survival. In cancer, this pathway can be activated by membrane receptors, including the HER (or ErbB) family of growth factor receptors, the insulin-like growth factor receptor, and the estrogen receptor. In the present work, we congregated an electronic network of mTORC1 built on an assembly of data using natural language processing, consisting of 470 edges (activations/interactions and/or inhibitions) and 206 nodes representing genes/proteins, using the Cytoscape 3.6.0 editor and its plugins for analysis. The experimental design included the extraction of gene expression data related to five distinct types of cancers, namely, pancreatic ductal adenocarcinoma, hepatic cirrhosis, cervical cancer, glioblastoma, and anaplastic thyroid cancer from Gene Expression Omnibus (NCBI GEO) followed by pre-processing and normalization of the data using R & Bioconductor. ExprEssence plugin was used for network condensation to identify differentially expressed genes across the gene expression samples. Gene Ontology (GO) analysis was performed to find out the over-represented GO terms in the network. In addition, pathway enrichment and functional module analysis of the protein-protein interaction (PPI) network were also conducted. Our results indicated NOTCH1, NOTCH3, FLCN, SOD1, SOD2, NF1, and TLR4 as upregulated proteins in different cancer types highlighting their role in cancer progression. The MCODE analysis identified gene clusters for each cancer type with MYC, PCNA, PARP1, IDH1, FGF10, PTEN, and CCND1 as hub genes with high connectivity. MYC for cervical cancer, IDH1 for hepatic cirrhosis, MGMT for glioblastoma and CCND1 for anaplastic thyroid cancer were identified as genes with prognostic importance using survival analysis.

IL-23 Inhibits Trophoblast Proliferation, Migration, and EMT via Activating p38 MAPK Signaling Pathway to Promote Recurrent Spontaneous Abortion

  • He, Shan;Ning, Yan;Ma, Fei;Liu, Dayan;Jiang, Shaoyan;Deng, Shaojie
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.6
    • /
    • pp.792-799
    • /
    • 2022
  • As a vital problem in reproductive health, recurrent spontaneous abortion (RSA) affects about 1% of women. We performed this study with an aim to explore the molecular mechanism of interleukin-23 (IL-23) and find optimal or effective methods to improve RSA. First, ELISA was applied to evaluate the expressions of IL-23 and its receptor in HTR-8/SVneo cells after IL-23 treatment. CCK-8, TUNEL, wound healing and transwell assays were employed to assess the proliferation, apoptosis, migration and invasion of HTR-8/SVneo cells, respectively. Additionally, the expressions of apoptosis-, migration-, epithelial-mesenchymal transition- (EMT-) and p38 MAPK signaling pathway-related proteins were measured by western blotting. To further investigate the relationship between IL-23 and p38 MAPK signaling pathway, HTR-8/SVneo cells were treated for 1 h with p38 MAPK inhibitor SB239063, followed by a series of cellular experiments on proliferation, apoptosis, migration and invasion, as aforementioned. The results showed that IL-23 and its receptors were greatly elevated in IL-23-treated HTR-8/SVneo cells. Additionally, IL-23 demonstrated suppressive effects on the proliferation, apoptosis, migration, invasion and EMT of IL-23-treated HTR-8/SVneo cells. More importantly, the molecular mechanism of IL-23 was revealed in this study; that is to say, IL-23 inhibited the proliferation, apoptosis, migration, invasion and EMT of IL-23-treated HTR-8/SVneo cells via activating p38 MAPK signaling pathway. In conclusion, IL-23 inhibits trophoblast proliferation, migration, and EMT via activating p38 MAPK signaling pathway, suggesting that IL-23 might be a novel target for the improvement of RSA.

Effect of the Hesperetin and Naringenin on $pp60^{v-src}$-induced $NF-{\kappa}B$ Activation ($pp60^{v-src}$에 의한 $NF-{\kappa}B$ 활성화에 대한 헤스페레틴과 나린제닌의 저해 효과)

  • Kwon, O-Song;Kim, Bo-Yeon;Kim, Kyoung-A;Kim, Min-Soo;Oh, Hyun-Cheol;Kim, Beom-Seok;Kim, Young-Ho;Ahn, Jong-Seog
    • Korean Journal of Pharmacognosy
    • /
    • v.35 no.3 s.138
    • /
    • pp.244-249
    • /
    • 2004
  • The effects of hesperetin and naringenin on $NF-{\kappa}B$ activation were investigated in normal rat kidney cells transformed by temperature sensitive Rous Sarcoma Virus (tsNRK). The flavonoids, naringenin and hesperetin, significantly reduced v-Src-induced $NF-{\kappa}B$ activation as well as phosphorylation of Akt and GSK-3 in tsNRK cells, whereas these compounds did not effect on platelet-derived growth factor (PDGF)-induced $NF-{\kappa}B$ activation in $NIH3T3{\gamma}l$ cells. In addition, the DNA binding activity of SP-I was also reduced but that of AP-1 was not affected by the compounds. Our study suggests that Src-induced $NF-{\kappa}B$ activation could occur via Akt-GSK-3 pathway without $IkB{\alpha}$ degradation and that naringenin and hesperetin could be used in the treatment of cancer through the inhibition of $NF-{\kappa}B$ activation.

Beyond Viral Interferon Regulatory Factors: Immune Evasion Strategies

  • Myoung, Jinjong;Lee, Shin-Ae;Lee, Hye-Ra
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.12
    • /
    • pp.1873-1881
    • /
    • 2019
  • The innate immune response serves as a first-line-of-defense mechanism for a host against viral infection. Viruses must therefore subvert this anti-viral response in order to establish an efficient life cycle. In line with this fact, Kaposi's sarcoma-associated herpesvirus (KSHV) encodes numerous genes that function as immunomodulatory proteins to antagonize the host immune system. One such mechanism through which KSHV evades the host immunity is by encoding a viral homolog of cellular interferon (IFN) regulatory factors (IRFs), known as vIRFs. Herein, we summarize recent advances in the study of the immunomodulatory strategies of KSHV vIRFs and their effects on KSHV-associated pathogenesis.

Influence of $C_5$-Precursors on $\delta$-Aminolevlinic Acid Biosynthesis in Rhodocyclus gelatinosus KUP-74 (Rhodocyclus gelatinosus KUP-74에 의한 $\delta$-Aminolevulinic acid 생합성의 $C_5$-전구물질의 영향)

  • 최경민;임왕진;황세영
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.6
    • /
    • pp.527-533
    • /
    • 1993
  • Aminolevulinic acid(ALA) was shown to be synthesized via active pathways of either C4 or C5 ALA biosynthesis in cells of a photosynthetic bacterium, Rhodocyclus gelatinosus KUP-74, where the C5 pathway was appeared to be preferntially expressed in the cells. It was strongly suggested that L-glutamine might be utilized more effectively than L-glutamate to synthesize ALA via C5 pathway in this bacterium from the fact of relationship between the cellular uptake rates of glutamate and its Gamma-derivaties and corresponded ALA productivities in vitro and in vivo.

  • PDF

Involvement of Akt in naphthoquinone analog-induced apoptosis in HL -60 cells

  • Kang, Seung-Koo;Mun, Jung-Yee;Kim, Hae-Jong;Chun, Young-Jin;Kim, Mie-Young
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.336.3-337
    • /
    • 2002
  • We previously reported that a synthetic naphthoquinone analog. 2.3-dichloro-5.8-dihydroxy-1, 4-naphthoquinone (NA). effectively induces apoptosis in human leukemic HL-60 cells. However. the cellular mechanism by which NA induces cell death remain unclear. In this study. we show that NA induces activation of capases. release of cytochrome c and upregulation of proapoptotic Bax protein. Futhermore. NA suppressed phosphorylation of Akt and Bad. suggesting that Akt regulates NA-induced apoptosis. Expresson of a dominant negative Akt enhancde NA-induced apoptosis. suggesting that naphthoquinone analog induces apoptosis through activating proapoptotic pathway and by the inactivation of antiapoptotic pathway.

  • PDF

Mechanisms of Type-I Interferon Signal Transduction

  • Uddin, Shahab;Platanias, Leonidas C.
    • BMB Reports
    • /
    • v.37 no.6
    • /
    • pp.635-641
    • /
    • 2004
  • Interferons regulate a number of biological functions including control of cell proliferation, generation of antiviral activities and immumodulation in human cells. Studies by several investigators have identified a number of cellular signaling cascades that are activated during engagement of interferon receptors. The activation of multiple signaling cascades by the interferon receptors appears to be critical for the generation of interferon mediated biological functions and immune surveillance. The present review summarizes the existing knowledge on the multiple signaling cascades activated by Type I interferons. Recent developments in this research area are emphasized and the implications of these new discoveries on our understanding of interferon actions are discussed.

Skeletal Development - Wnts Are in Control

  • Hartmann, Christine
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.177-184
    • /
    • 2007
  • Approximately 200 individual skeletal elements, which differ in shape and size, are the building blocks of the vertebrate skeleton. Various features of the individual skeletal elements, such as their location, shape, growth and differentiation rate, are being determined during embryonic development. A few skeletal elements, such as the lateral halves of the clavicle and parts of the skull are formed by a process called intramembranous ossification, whereby mesenchymal cells differentiate directly into osteoblasts, while the majority of skeletal elements are formed via endochondral ossification. The latter process starts with the formation of a cartilaginous template, which eventually is being replaced by bone. This requires co-regulation of differentiation of the cell-types specific for cartilage and bone, chondrocytes and osteoblasts, respectively. In recent years it has been demonstrated that Wnt family members and their respective intracellular pathways, such as non-canonical and the canonical $Wnt/{\beta}$-catenin pathway, play important and diverse roles during different steps of vertebrate skeletal development. Based on the recent discoveries modulation of the canonical Wnt-signaling pathway could be an interesting approach to direct stem cells into certain skeletal lineages.

ESCRT, autophagy, and frontotemporal dementia

  • Lee, Jin-A;Gao, Fen-Biao
    • BMB Reports
    • /
    • v.41 no.12
    • /
    • pp.827-832
    • /
    • 2008
  • Many age-dependent neurodegenerative diseases are associated with the accumulation of abnormally folded proteins within neurons. One of the major proteolytic pathways in the cell is the autophagy pathway, which targets cytoplasmic contents and organelles to the lysosomes for bulk degradation under various physiological and stressful conditions. Although the importance of autophagy in cellular physiology is well appreciated, its precise roles in neurodegeneration remain largely unclear. Recent studies indicate that components of the endosomal sorting complex required for transport (ESCRT) are important in the autophagy pathway. Reduced activity of some ESCRT subunits leads to the accumulation of autophagosomes and failure to clear intracellular protein aggregates. Interestingly, rare mutations in CHMP2B, an ESCRT-III subunit, are associated with frontotemporal dementia linked to chromosome 3 (FTD3). Mutant CHMP2B proteins seem to disrupt the fusion of autophagosomes and lysosomes in cell culture models. These findings suggest a potential mechanism for the pathogenesis of FTD3 and possibly other neurodegenerative diseases as well.