• 제목/요약/키워드: Cellular organelles

검색결과 117건 처리시간 0.027초

Mitochondrial noncoding RNA transport

  • Kim, Kyoung Mi;Noh, Ji Heon;Abdelmohsen, Kotb;Gorospe, Myriam
    • BMB Reports
    • /
    • 제50권4호
    • /
    • pp.164-174
    • /
    • 2017
  • Mitochondria are cytosolic organelles essential for generating energy and maintaining cell homeostasis. Despite their critical function, the handful of proteins expressed by the mitochondrial genome is insufficient to maintain mitochondrial structure or activity. Accordingly, mitochondrial metabolism is fully dependent on factors encoded by the nuclear DNA, including many proteins synthesized in the cytosol and imported into mitochondria via established mechanisms. However, there is growing evidence that mammalian mitochondria can also import cytosolic noncoding RNA via poorly understood processes. Here, we summarize our knowledge of mitochondrial RNA, discuss recent progress in understanding the molecular mechanisms and functional impact of RNA import into mitochondria, and identify rising challenges and opportunities in this rapidly evolving field.

Channelopathies

  • Kim, June-Bum
    • Clinical and Experimental Pediatrics
    • /
    • 제57권1호
    • /
    • pp.1-18
    • /
    • 2014
  • Channelopathies are a heterogeneous group of disorders resulting from the dysfunction of ion channels located in the membranes of all cells and many cellular organelles. These include diseases of the nervous system (e.g., generalized epilepsy with febrile seizures plus, familial hemiplegic migraine, episodic ataxia, and hyperkalemic and hypokalemic periodic paralysis), the cardiovascular system (e.g., long QT syndrome, short QT syndrome, Brugada syndrome, and catecholaminergic polymorphic ventricular tachycardia), the respiratory system (e.g., cystic fibrosis), the endocrine system (e.g., neonatal diabetes mellitus, familial hyperinsulinemic hypoglycemia, thyrotoxic hypokalemic periodic paralysis, and familial hyperaldosteronism), the urinary system (e.g., Bartter syndrome, nephrogenic diabetes insipidus, autosomal-dominant polycystic kidney disease, and hypomagnesemia with secondary hypocalcemia), and the immune system (e.g., myasthenia gravis, neuromyelitis optica, Isaac syndrome, and anti-NMDA [N-methyl-D-aspartate] receptor encephalitis). The field of channelopathies is expanding rapidly, as is the utility of molecular-genetic and electrophysiological studies. This review provides a brief overview and update of channelopathies, with a focus on recent advances in the pathophysiological mechanisms that may help clinicians better understand, diagnose, and develop treatments for these diseases.

6가 크롬의 환원과 발암 (Reduction of Chromium (Ⅵ) and Carcinogenesis)

  • 박형숙
    • Environmental Analysis Health and Toxicology
    • /
    • 제18권3호
    • /
    • pp.165-174
    • /
    • 2003
  • Cr (Ⅵ) - containing compounds are well-established carcinogens, although the mechanism for chromium - induced carcinogenesis is still not well understood. The reduction of Cr (Ⅵ) to its lower oxidation states, par ticularly Cr (V) and Cr (IV), is an important step for the production of chromium-mediated reactive oxygen species (ROS). The persistent oxidative stress during the reduction process may play a key role in the mechanism of Cr (Ⅵ) -induced carcinogenesis. This paper summarizes recent studies on (1) the reduction of Cr (Ⅵ) to Cr (III) occur by a multiplicity of mechanisms depending on the nature of reducing agents including ascorbate, diol-and thiol-containing molecules, certain flavoenzymes, cell organelles, intact cells, and whole animals; (2) free-radical production with emphasis on hydroxy radical generation via Fenton or Haber-Weiss type reactions; and (3) free radical - induced cellular damage, such at DNA strand breaks, hydroxylation of 2'-deoxyguanosine, and activation of nuclear transcription factor kB.

ESCRT, autophagy, and frontotemporal dementia

  • Lee, Jin-A;Gao, Fen-Biao
    • BMB Reports
    • /
    • 제41권12호
    • /
    • pp.827-832
    • /
    • 2008
  • Many age-dependent neurodegenerative diseases are associated with the accumulation of abnormally folded proteins within neurons. One of the major proteolytic pathways in the cell is the autophagy pathway, which targets cytoplasmic contents and organelles to the lysosomes for bulk degradation under various physiological and stressful conditions. Although the importance of autophagy in cellular physiology is well appreciated, its precise roles in neurodegeneration remain largely unclear. Recent studies indicate that components of the endosomal sorting complex required for transport (ESCRT) are important in the autophagy pathway. Reduced activity of some ESCRT subunits leads to the accumulation of autophagosomes and failure to clear intracellular protein aggregates. Interestingly, rare mutations in CHMP2B, an ESCRT-III subunit, are associated with frontotemporal dementia linked to chromosome 3 (FTD3). Mutant CHMP2B proteins seem to disrupt the fusion of autophagosomes and lysosomes in cell culture models. These findings suggest a potential mechanism for the pathogenesis of FTD3 and possibly other neurodegenerative diseases as well.

초파리 rdgA 시각돌연변이체 단안의 형태적 연구 (Ultrastructure of Ocellus in Drosophila melanogaster Visual Mutant rdgA)

  • 윤춘식
    • 생명과학회지
    • /
    • 제9권3호
    • /
    • pp.308-313
    • /
    • 1999
  • Ocellar morphological abnormality was studied in Drosophila rdgA mutant. In the mutant, ocellar photoreceptor cells were generally affected by the defection of rdgA molecules. Among organelles of photoreceptor cell, rhabdomeres were remarkably degenerated. The rdgA molecule, diacylglycerol kinase, was localized around SRC just below the rhabdomeric region. As a secondary phenomenon of photoreceptor degeneration, rER, multivesicular body and multilamella body were appeared in cytoplasm and these were known as to clean the cellular debris. These morphological abnormality was generally observed in degenerating cells. In Drosophila mutant, the degeneration of ocellar photoreceptor cell was facilitated to time. More intense morphological defection was observed in rdgA^{ks60} rather than in yw;rdgApc47.

  • PDF

Squalene이 항암제를 투여한 흰쥐의 간에 미치는 효과 (Effects of Squalene on the Rat Liver Treated with a Anticancer Agent)

  • 김정상;김종세
    • Applied Microscopy
    • /
    • 제26권1호
    • /
    • pp.1-9
    • /
    • 1996
  • This paper aims to probe the effect of SQ in the rat liver which pretreated with CP was examined by transmission electron microscope. In the A group, the difference between the normal and the treated groups were not detected at 24 hours, but the few mitochondria were expanded at the 72 hours. In the B group, the cisternae of rough-surfaced endoplasmic reticulum were partially destructed and attached ribosomes were remarkably decreased at 24 hours. A number of the mitochondria were dilated and increased in number, the filamentous materials also detected at 72 hours. These results suggest that SQ is not only concerned with construction of the membrane of the cell organelles but also decreased the cellular toxicity in the hepatic cells.

  • PDF

Protein and RNA Quality Control by Autophagy in Plant Cells

  • Yoon, Seok Ho;Chung, Taijoon
    • Molecules and Cells
    • /
    • 제42권4호
    • /
    • pp.285-291
    • /
    • 2019
  • Eukaryotic cells use conserved quality control mechanisms to repair or degrade defective proteins, which are synthesized at a high rate during proteotoxic stress. Quality control mechanisms include molecular chaperones, the ubiquitin-proteasome system, and autophagic machinery. Recent research reveals that during autophagy, membrane-bound organelles are selectively sequestered and degraded. Selective autophagy is also critical for the clearance of excess or damaged protein complexes (e.g., proteasomes and ribosomes) and membrane-less compartments (e.g., protein aggregates and ribonucleoprotein granules). As sessile organisms, plants rely on quality control mechanisms for their adaptation to fluctuating environments. In this mini-review, we highlight recent work elucidating the roles of selective autophagy in the quality control of proteins and RNA in plant cells. Emphasis will be placed on selective degradation of membrane-less compartments and protein complexes in the cytoplasm. We also propose possible mechanisms by which defective proteins are selectively recognized by autophagic machinery.

Ataxia-Telangiectasia Mutated Is Involved in Autolysosome Formation

  • Mihwa Hwang;Dong Wha Jun;Bo Ram Song;Hanna Shim;Chang-Hun Lee;Sunshin Kim
    • Biomolecules & Therapeutics
    • /
    • 제31권5호
    • /
    • pp.559-565
    • /
    • 2023
  • Ataxia-telangiectasia mutated (ATM), a master kinase of the DNA damage response (DDR), phosphorylates a multitude of substrates to activate signaling pathways after DNA double-strand breaks (DSBs). ATM inhibitors have been evaluated as anticancer drugs to potentiate the cytotoxicity of DNA damage-based cancer therapy. ATM is also involved in autophagy, a conserved cellular process that maintains homeostasis by degrading unnecessary proteins and dysfunctional organelles. In this study, we report that ATM inhibitors (KU-55933 and KU-60019) provoked accumulation of autophagosomes and p62 and restrained autolysosome formation. Under autophagy-inducing conditions, the ATM inhibitors caused excessive autophagosome accumulation and cell death. This new function of ATM in autophagy was also observed in numerous cell lines. Repression of ATM expression using an siRNA inhibited autophagic flux at the autolysosome formation step and induced cell death under autophagy-inducing conditions. Taken together, our results suggest that ATM is involved in autolysosome formation and that the use of ATM inhibitors in cancer therapy may be expanded.

Double staining method for array tomography using scanning electron microscopy

  • Eunjin Kim;Jiyoung Lee;Seulgi Noh;Ohkyung Kwon;Ji Young Mun
    • Applied Microscopy
    • /
    • 제50권
    • /
    • pp.14.1-14.6
    • /
    • 2020
  • Scanning electron microscopy (SEM) plays a central role in analyzing structures by imaging a large area of brain tissue at nanometer scales. A vast amount of data in the large area are required to study structural changes of cellular organelles in a specific cell, such as neurons, astrocytes, oligodendrocytes, and microglia among brain tissue, at sufficient resolution. Array tomography is a useful method for large-area imaging, and the osmium-thiocarbohydrazide-osmium (OTO) and ferrocyanide-reduced osmium methods are commonly used to enhance membrane contrast. Because many samples prepared using the conventional technique without en bloc staining are considered inadequate for array tomography, we suggested an alternative technique using post-staining conventional samples and compared the advantages.

Ultrastructures of the Loaves of Cucumber Plane Treated with DL-3-Aminobutyric Acid at the Vascular Bundle and the Penetration Sites after Inoculation with Colletotrichum orbiculare

  • Jeun, Y.C.;Park, E.W.
    • The Plant Pathology Journal
    • /
    • 제19권2호
    • /
    • pp.85-91
    • /
    • 2003
  • Pre-treatment with DL-3-aminobutyric acid (BABA) in the cucumber plants caused the decrease of disease severity after inoculation with anthracnose pathogen Colletotrichum orbiculare. In this study, ultrastructures of the vascular bundle and the infection structures in the leaves of BABA-treated as well as untreated cucumber plants were observed after inoculation with the anthracnose pathogen by electron microscopy. The ultrastructures of vascular bundle in the leaves of BABA-treated plants were similar to those of the untreated plants except plasmodesmata. In the BABA-treated plants, the plasmodesmata were more numerous than in the untreated plants, suggesting that the BABA treatment may cause the active transfer of metabolites through the vascular bundle. In the leaves of untreated plants, the fungal hyphae were spread widely in the plant tissues at 5 days after pathogen inoculation. Most cellular organelles in the hyphae were intact, indicating a compatible interaction between the plant and the parasite. In contrast, in the leaves of BABA pre-treated plants the growth of most hyphae was restricted to the epidermal cell layer at 5 days after inoculation. Most hyphae cytoplasm and nucleoplasm was electron dense or the intracellular organelles were degenerated. The cell walls of some plant cells became thick at the site adjacent to the intercellular hyphae, indicating a mechanical defense reaction of the plant cells against the fungal attack. Furthermore, hypersensitive reaction (HR) of the epidermal cells was often observed, in which the intracellular hyphae were degenerated. Based on these results it is suggested that BABA causes the enhancement of defense mechanisms in the cucumber plants such as cell wall apposition or HR against the invasion of C. orbiculare.