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Mitochondria are cytosolic organelles essential for generating 
energy and maintaining cell homeostasis. Despite their critical 
function, the handful of proteins expressed by the mito-
chondrial genome is insufficient to maintain mitochondrial 
structure or activity. Accordingly, mitochondrial metabolism is 
fully dependent on factors encoded by the nuclear DNA, 
including many proteins synthesized in the cytosol and 
imported into mitochondria via established mechanisms. 
However, there is growing evidence that mammalian mito-
chondria can also import cytosolic noncoding RNA via poorly 
understood processes. Here, we summarize our knowledge of 
mitochondrial RNA, discuss recent progress in understanding 
the molecular mechanisms and functional impact of RNA 
import into mitochondria, and identify rising challenges and 
opportunities in this rapidly evolving field. [BMB Reports 
2017; 50(4): 164-174]

INTRODUCTION

As a primary site for energy generation, calcium signaling, and 
apoptotic factors, mitochondria are essential multifunctional 
organelles in eukaryotic cells. Derived from endosymbiotic 
bacterial ancestors, eukaryotic mitochondria have their own 
genome and are equipped with fully functional gene 
expression machineries (1, 2). To maintain their biogenesis 
and function, however, mitochondria require a large number 
of proteins that are encoded by the nuclear genome, translated 
in the cytosol, and subsequently imported into mitochondria. 
Accordingly, there has been a strong effort to elucidate the 
mechanisms of protein import into mitochondria (3-5).

Since the first discovery of cytosolic transfer RNAs (tRNAs) 
in mitochondria 50 years ago (6), evidence has accumulated 
supporting the notion that many types of RNA transcribed 
from nuclear DNA are actively delivered to mitochondria. 

Imported RNAs include different types of noncoding 
(nc)RNAs, such as tRNAs, 5S rRNA, MRP RNA (RMRP), and 
RNase P RNA (RPPH1) (7-13), as well as microRNAs 
(mitomiRs) (14, 15). Their mobilization into mitochondria 
requires a range of protein factors (16-19), although the 
mechanisms that select and import RNAs into mitochondria, 
as well as the impact of imported RNAs on mitochondrial gene 
expression programs are largely unknown.

MITOCHONDRIAL TRANSCRIPTS AND THEIR 
FUNCTIONS

The mammalian mitochondrial genome (∼12,500 bp) encodes 
13 proteins, 22 tRNAs, and two ribosomal RNAs, 12S rRNA 
and 16S rRNA, which assemble the small (28S) and large (39S) 
subunits of the 55S mitochondrial ribosome (20). The 
mammalian mitochondrial DNA is transcribed as polycistronic 
precursor RNAs synthesized from both strands, the heavy (H) 
and the light (L) strands. The individual mitochondrial (mt-) 
rRNA and mt-mRNA sequences are regularly interspersed with 
mt-tRNA genes (21). The 13 proteins encoded by the mito-
chondrial genome function in the oxidative phosphorylation 
(OX-PHOS) complex (21, 22).

lncND5, lncND6, and lncCyt b
Recently, two different laboratories reported whole-transcrip-
tome analyses of purified human mitochondria and mitoplasts 
(23, 24). The studies identified numerous small RNAs and long 
noncoding RNAs (lncRNAs) transcribed from the mitochondrial 
genome. Among them, the lncRNAs lncND5, lncND6, and 
lncCyt b were identified as the counterpart antisense trans-
cripts of the mitochondrial ND5, ND6, and CYTB mRNAs, 
respectively (23). lncND5 and lncCyt b were transcribed from 
the L strand, and lncND6 from the H strand of the mitochondrial 
DNA. Intriguingly, one of the known mitochondrial RNA 
processing proteins, the mitochondrial RNase P protein 1 
(MRPP1) (25), was proposed to have a unique RNA processing 
function, influencing the maturation and abundance of 
lncRNA transcripts (24) (Table 1).

SncmtRNA and ASncmtRNAs
Villegas et al. reported a human mitochondrial chimeric 
transcript called sense noncoding mitochondria ribosomal 
RNA (SncmtRNA) (26), structurally similar to a mouse 
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Fig. 1. Schematic of the ncRNAs transported through the mitochondrial outer and inner membranes (OM, IM). Left, ncRNAs synthesized in 
mitochondria but found elsewhere (nucleus and extracellular space); right, ncRNAs synthesized in the nucleus and found in mitochondria, 
including tRNAs, 5S rRNA, lncRNAs like RMRP, and microRNAs and their precursors. Transport factors identified as mediators of these 
processes, including many ncRNA-interacting RBPs, are indicated. Yellow, nucleus; gray, cytoplasm; blue, mitochondria; pink, extracellular 
space.

mitochondrial RNA, containing a loop structure and a long 
inverted repeat (IR) linked to the 5’ end of the sense 
mitochondrial 16S rRNA (27). Interestingly, SncmtRNA was 
only detected in proliferating cells but not in resting cells, 
suggesting that it might be a marker of cell proliferation (26). 
Two other ncRNAs that formed a similar chimeric structure 
with SncmtRNA but containing the antisense fragment of 16S 
rRNA transcribed from the L-strand were later identified 
(ASncmtRNA1 and ASncmtRNA2) (28).

Unlike the SncmtRNA, which is abundant in normal and 
cancerous proliferating cells, ASncmtRNA1 and ASncmtRNA2 
were found expressed only in normal cells and were much less 
abundant in tumor cells (26, 28). A striking subsequent report 
found that both SncmtRNA and ASncmtRNAs were found in 
the nucleus associated with heterochromatin, suggesting the 
possibility that these mitochondrial lncRNAs participate in 
intraorganellar communication via retrograde signaling path-

ways (29). Recently, the ASncmtRNA2 was found upregulated 
in senescent cells, where ASncmtRNA2 delayed cell cycle 
progression through the G2/M cell cycle phases, possibly 
through the action of two microRNAs (hsa-miR4485 and 
hsa-miR1973) derived from ASncmtRNA2 (30) (Table 1, Fig. 1).

LIPCAR
Very recently, a novel mitochondrial DNA-encoded lncRNA, 
LIPCAR (long intergenic noncoding RNA predicting cardiac 
remodeling) was identified in plasma of patients with left 
ventricular (LV) remodeling post-myocardial infarction (MI). 
LIPCAR levels declined in early stages after myocardial 
infarction, but increased in late stages, coinciding with LV 
remodeling. Increased levels of LIPCAR identified patients at 
high risk of heart failure or death, suggesting that LIPCAR was 
a possible biomarker for cardiac remodeling in patients who 
had an episode of acute MI (31)  (Table 1, Fig. 1). 
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LOCALIZATION OF NUCLEAR DNA-ENCODED RNAs 
INTO MITOCHONDRIA 

Although mitochondria synthesize dozens of RNAs from their 
own mitochondrial DNA, some nuclear DNA-encoded RNAs 
can be mobilized into mitochondria. As mentioned above, the 
import mechanism of cytoplasmic proteins into mitochondria 
has been studied in detail, but the mechanisms that import 
nuclear DNA-encoded RNAs into mitochondria are far less 
clear (32). Only a few noncoding transcripts are selectively 
transported into the mitochondrial matrix (17, 24). In this 
section, we discuss the current knowledge of the major 
mitochondria-localized ncRNAs: tRNA, 5S rRNA (9, 11), MRP 
RNA (RMRP) (33), RNase P RNA (RPPH1) (12), and 
microRNAs (mitomiRs) (14, 15).

tRNA (tRNALys, tRK1)
The presence of nuclear DNA-encoded tRNAs in mitochondria 
was first suggested decades ago from a survey of the protozoan 
Tetrahymena (6). A following study in yeast S. cerevisiae also 
found that one of two mitochondrial tRNAs (isoacceptors of 
tRNALys) originated from the nuclear DNA (34). Since this time, 
the traffic of nuclear DNA-encoded tRNAs to mitochondria has 
been observed in many organisms, including protozoa (35-40), 
yeast (41, 42), plants (43-48), and mammals (49). We now 
recognize that in most organisms at least a few cytosolic tRNA 
species are required for maintaining mitochondrial biogenesis 
(50, 51). Moreover, a cytoplasmic tRNA from yeast (tRNALys; 
tRNALys acceptor 1, tRK1) was found to be internalized into 
human mitochondria (32, 52), suggesting that yeast and 
human mitochondria might share key components of RNA 
import (53).

Mitochondrial tRNA import occurs in higher organisms 
including human, even though mitochondrial DNA already 
encodes a full set of tRNAs required for the mitochondrial 
translation (52, 54, 55). The protein factors responsible for 
targeting the yeast tRNA tRK1 to mitochondria include the 
glycolytic enzyme enolase (ENO2P), which binds tRK1 to form 
a complex that is directed to the mitochondrial surface, 
whereupon the tRNA is handed over to the precursor of the 
mitochondrial lysyl-tRNA synthetase (preMSK or pre-LysRS) 
(56-58). The resulting complex tRNA-pre-LysRS is then 
internalized into the mitochondrial matrix through the protein 
import pathway, comprising the translocase of the translocase 
of the outer (TOM) and inner (TIM) mitochondrial membrane 
(the TOM/TIM complex) (59, 60). A recent study investigating 
the conformational change of the labeled tRNALys (tRK1) 
suggested that tRNA alters its structure upon binding to each 
carrier protein (ENO2P and pre-LysRS) of the import pathway 
(61). Both tRK1 and an artificial RNA containing the structural 
elements required for tRK1 mitochondrial import were 
targeted into human mitochondria with assistance by the 
cytosolic precursor of human mitochondrial lysyl-tRNA 
synthetase (pre-KARS2) and mammalian ENO2 (62). However, 

it is still unclear how tRNA and pre-LysRS remain bound 
during translocation through the the TOM and TIM complexes 
(63, 64), despite indications that the mitochondrial protein 
import machinery might accommodate proteins conjugated 
with RNAs (65) (Fig. 1).

5S rRNA
Ancestral mitochondria were believed to have a complete set 
of rRNAs, but most mitochondrial rRNAs, including 5S rRNA, 
were lost during evolution (66). Two proteins were found to 
regulate the intracellular distribution and ribosomal assembly 
of 5S rRNA: the transcription factor TFIIIA, which binds to 5S 
rRNA and mediates the nuclear export of 5S rRNA and its 
ribosomal integration in X. laevis oocytes (67, 68), and the 
ribosomal protein L5, which forms the RNP complex 5S 
rRNA-L5 (69), essential for delivering 5S rRNA to the cytoplasm 
and assembling it into ribosomes (70, 71) (Fig. 1).

Other studies showed that a substantial portion of nuclear 
DNA-encoded 5S rRNA is directed to mammalian mitochondria 
(9, 11). Entelis et al. proposed that cytosolic 5S rRNA imported 
into mitochondria might substitute for its missing counterpart 
and form a functional mitochondrial ribosome (mitoribosome) 
large subunit (LSU) (32). Several proteins regulating 5S rRNA 
import into mitochondria, as well as key 5S rRNA motifs (helix 
I and helix IV-loop D) have been identified in recent years 
(72). For example, the mitochondrial enzyme Rhodanese 
bound the helix I sequence of 5S rRNA and enhanced 5S 
rRNA import, while Rhodanese depletion abolished 5S rRNA 
import into mitochondria and decreased global mitochondrial 
translation, suggesting that the Rhodanese-driven localization 
of 5S rRNA enhances mitochondrial function (73) (Fig. 1). 
Human MRP (mitochondrial ribosomal protein)-L18 was 
identified as another 5S rRNA import factor. As observed for 
Rhodanese, the import sequence of 5S rRNA directly 
interacted with mature MRP-L18 but also with its precursor, 
preMRP-L18, which contains a mitochondria-targeting 
sequence in its N-terminal region. The interaction between 
preMRP-L18 and 5S rRNA in the cytosol causes a 
conformational change in 5S rRNA that makes it recognized 
by Rhodanese and translocated into mitochondria. In the 
matrix, the innermost space in mitochondria, 5S rRNA was 
proposed to associate with the mature MRP-L18 and with 
mitoribosomes, affecting mitochondrial translation efficiency 
(18) (Fig. 1).

MRP RNA (RMRP)
The 267-nt long lncRNA RMRP is an RNA component of the 
mitochondrial RNA-processing endoribonuclease complex 
(RNase MRP), and its mutation causes the pleiotropic human 
disease cartilage-hair hypoplasia (CHH) (74). RMRP is broadly 
expressed in mouse and human tissues from an intronless 
nuclear gene (75), and resides in the nucleus and mitochon-
dria. In the nucleus, RMRP is involved in the 5’end maturation 
of 5.8S rRNA (76, 77) and influences yeast cell division cycle 
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Genome 
source Noncoding RNA Subcellular 

localization
Interacting proteins 

(RBPs)
Translocation 
Mechanism Functions References

Mitochondri
al DNA

lncND5 Mitochondria MRPP1 Unknown Mitochondrial gene 
expression

(23, 24)

lncND6
lncCyt b
SncmtRNA Nucleus, 

mitochondria
Unknown Unknown (26, 29)

ASncmtRNA1 Unknown (28, 29)

ASncmtRNA2 Cell cycle regulation (28-30)

LIPCAR Extracellular 
(plasma)

Unknown (31)

Nuclear 
DNA

tRNA Cytoplasm, 
mitochondria

ENO2P, pre-KARS2 Mitochondrial 
import

Mitochondrial translation (62)

5S rRNA Cytoplasm, 
mitochondria

TFIIIA, RPL5, MRP 
L18, Rhodanese

Nuclear export/ 
mitochondrial 
import

(67, 68, 73)

MRP RNA (RMRP) Nucleus, 
mitochondria

HuR, CRM1, 
GRSF1, PNPASE, 
hTERT

Nuclear export/ 
mitochondrial 
import

Ribosomal RNA (5.8S) 
maturation, cell division, 
mitochondrial RNA 
processing, mitochondrial 
DNA replication

(17, 19)

RNase P RNA 
(RPPH1)

Nucleus, 
mitochondria

PNPASE Mitochondrial 
import

Unknown (17)

miRNAs (mitomiRs) Cytoplasm, 
mitochondria

AGO2 Unknown Mitochondrial gene 
expression

(14, 15, 105, 112)

Table 1. Mitochondrial noncoding RNAs

by binding the 5’untranslated region (UTR) of B-cyclin (CLB2) 
mRNA and degrading CLB2 mRNA during mitosis (78). 
Human telomerase reverse transcriptase (hTERT) also 
associated with RMRP and synthesized a double-stranded 
RNA (dsRMRP) that was recognized by the endoribonuclease 
DICER1 and processed into short interfering (si) RNA (79).

There is strong evidence that RMRP is also found in 
mammalian mitochondria (17, 19, 23). The Clayton 
laboratory further proposed that RMRP was involved in 
mitochondrial RNA processing as well as in mitochondrial 
DNA replication (7, 8), although these functions are not fully 
understood. PNPASE (polynucleotide phosphorylase or 
3’-to-5’ exoribonuclease and poly(A) polymerase) is a nuclear 
DNA-encoded protein that can be localized in the 
mitochondrial intermembrane space (IMS) (80-82). Recently, 
Wang et al. identified a novel function for mitochondrial 
PNPASE in regulating the import into the mitochondrial 
matrix of RNAs transcribed in the nucleus. Besides its impact 
on mitochondrial RNA processing, translation, and 
respiration, PNPASE can internalize RNAs including RMRP, 
5S rRNA, and RNase P RNA (RPPH1, described in the next 
section) from the IMS into the matrix. Interestingly, both 
RMRP and RPPH1 were shown to share a stem loop structure 
recognized by PNPASE, which is critical for their 

translocation (17) (Table 1, Fig. 1).
Very recently, Noh et al. proposed a molecular mechanism 

whereby RBPs contributed to the intracellular and the 
suborganelle-specific distribution of lncRNP complexes. Their 
findings revealed that RMRP is exported from the nucleus to 
the cytosol by the RBP HuR through a CRM1 (chromosome 
region maintenance 1)-dependent nuclear export pathway. 
The exported RMRP was targeted into the mitochondrial 
matrix through unknown mechanisms, but once in the matrix, 
a nuclear DNA-encoded, mitochondria-resident RBP, GRSF1 
(G-rich RNA sequence-binding factor 1), interacted with the 
imported RMRP and the resulting lncRNP complex was 
proposed to contribute to mitochondrial function by affecting 
the OX-PHOS system and mitochondrial DNA replication (19) 
(Table 1, Fig. 1). 

RNase P RNA (H1 RNA, RPPH1)
RNase P RNA from bacteria, archaea, and eukarya was initially 
characterized as a catalytic subunit of a ribozyme capable of 
removing the 5’ leader sequence from tRNA precursors in the 
absence of protein subunits (83-85). An endoribonuclease 
protein complex that cleaves the E. coli tRNATyr at the same 
site as bacterial RNase P was partially purified from mammalian 
mitochondria and was named mtRNase P, to distinguish it 
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from its nuclear counterpart (nuRNase P) (86). Subsequent 
studies found that unlike mammalian nuRNase P and bacterial 
RNase P, which include an RNA component, mammalian 
mtRNase P does not (13, 87); however, other studies found an 
RNA similar to the H1 RNA of nuRNase P bound to 
mammalian mtRNase P (12, 88). Despite controversy about its 
function, there is strong evidence that RNase P RNA is 
imported into the mitochondrial matrix (17, 19, 23) (Table 1, 
Fig. 1). 

MITOCHONDRIA-DIRECTED MicroRNAs (mitomiRs)

MicroRNAs (miRNAs) are small noncoding RNA molecules 
(∼22 nucleotides long) that generally target and suppress 
mRNA stability and/or translation (89, 90). They are transcribed 
as primary (pri-)microRNAs, which are processed in the 
nucleus by the DROSHA/DGCR8 complex into precursor 
(pre-)microRNAs that are exported to the cytoplasm and further 
processed by DICER1 into mature microRNAs. MicroRNAs 
associated with the RBP AGO2 (argonaute 2), a component of 
the RNA-induced silencing complex (RISC), are directed to 
target mRNAs with which they share partial sequence comple-
mentarity (91-94). MicroRNAs can potentially interact with a 
wide range of target mRNAs and thus have emerged as potent 
posttranscriptional regulators involved in several cellular 
processes, including survival, death, division, differentiation, 
and senescence (95-101). In turn, they impact upon 
physiologic processes and diseases, such as cancer, cardio-
vascular disease, neurodegeneration, aging, inflammation, and 
diabetes (101-103). The recent discovery of microRNAs in 
mitochondria has expanded the spectrum of possible 
posttranscriptional functions of microRNAs and has led to a 
search for mechanisms of microRNA translocation to 
mitochondria. In this section, we review some of these 
microRNAs and their impact on mitochondrial functions. 

MicroRNAs and AGO2 in mitochondria
Generally, microRNAs function as the sequence specificity- 
conferring component of the RISC, which suppresses the 
stability and/or translation of target mRNAs in the cytosol. The 
RISC includes multiple RBPs such as AGO, TRBP1, TRBP2, and 
GW182. Accumulating evidence indicates that microRNAs and 
AGO2 exist in mitochondria (14, 15, 104), although the 
mechanisms through which microRNAs are imported into 
mitochondria as well as their functional impact are largely 
unknown. Pre-microRNAs have also been detected in mito-
chondria, suggesting that some aspects of microRNA biogenesis 
may occur in mitochondria (105-107). Moreover, the discovery 
of AGO2-bound microRNAs in mitochondria suggests that 
AGO2 may be important for the import of microRNAs into 
mitochondria possibly via co-import (108); interestingly, there 
is no evidence that other AGO proteins (e.g., AGO1 and 
AGO3) are imported to mitochondria (109). Crosslinking and 
immunoprecipitation (CLIP)-based analyses have further shown 

that AGO2 is associated with mitochondrial DNA-encoded 
transcripts (104). At present, the full mechanisms that govern 
these translocation events are not known.

Function of mitomiRs
The vast majority of microRNAs found in mitochondria, 
collectively known as mitomiRs (110), are encoded by nuclear 
DNA, although a few microRNAs (specifically, miR-1974, 
miR-1977, and miR-1978) are encoded by mitochondrial DNA 
(14). Although the functions of most mitomiRs are unknown, 
they have been suggested to play roles in cell survival, cell 
division, and energy metabolism, as well as in disease 
processes like cancer (111). Among the few mitomiRs that 
have been studied functionally, the nuclear DNA-encoded 
miR-181c was found to translocate into mitochondria and to 
regulate mitochondrial gene expression. In rodents, overex-
pression of miR-181c, which targeted and downregulated 
mt-COX1 (cytochrome c oxidase subunit 1) mRNA, led to 
higher ROS production, lower exercise capacity, and the 
appearance of cardiac dysfunction (112). Interestingly, the 
translocation of miR-1 into mitochondria with AGO2 led to 
increased translation of COX1 and the mitochondrial 
DNA-encoded NADH dehydrogenase 1 (ND1), suggesting that 
miR-1 coordinates gene expression networks in the cytoplasm 
and the mitochondria during muscle differentiation (109). 

Next-generation sequencing (NGS) identified several 
microRNAs imported into mitochondria in 206 o cells, such 
as miR-181c-5p and miR-146a-5p, which had many potential 
targets within the mitochondria, including RNAs transcribed 
from nuclear DNA and from mitochondrial DNA (112, 113). 
The mitochondria-localized miR-34a was recently found to 
control the integrity of the blood-brain barrier in cultured 
cerebrovascular endothelial cells by lowering mitochondrial 
oxidative phosphorylation and the levels of adenosine 
triphosphate and cytochrome c (114). However, miR-34a was 
also detected in the cytosol and thus its effect on the integrity 
of the blood-brain barrier might include miR-34a actions on 
cytosolic mRNAs. In a mouse model of diabetic heart and in 
HL-1 cells, Jagannathan et al. identified a pool of mitomiRs 
including miR-378, which translocated into mitochondria 
following a diabetic insult and downregulated the 
mitochondrially encoded F0 component ATP6, essential for 
cardiac pump function (115).

Together, these studies provide evidence that a substantial 
portion of microRNAs are imported into mitochondria and 
may influence mitochondrial gene expression programs widely. 
MitomiRs can enhance and reduce the expression of mRNAs 
originated from mitochondrial and nuclear transcription and in 
turn affect mitochondrial metabolic activity and cell homeo-
stasis. It will be important to elucidate the mechanisms that 
govern microRNA localization in mitochondria, including the 
transport and interaction factors (e.g., RBPs and long noncoding 
RNAs), the mitochondria localization signals that tag microRNAs 
to mitochondria (e.g., RNA motifs), and the mitochondrial 
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transport machineries that mediate such transport. In addition, 
it will be critical to identify the mitochondrial interaction 
partners (AGO2 and likely other RBPs) that enable the 
mitochondrial functions of mitomiRs. 

CONCLUDING REMARKS 

We have summarized our knowledge of noncoding RNAs 
mobilized into and out of mitochondria as well as their 
function. We discuss specific areas that warrant immediate 
attention as the field progresses. 

RNP complexes implicated in mitochondrial RNA 
mobilization
Recent advances in high-throughput sequencing technology 
have revealed vast numbers of lncRNAs expressed in cells 
(116) and follow-up studies have shown that they regulate 
gene expression programs transcriptionally, post-transcrip-
tionally, and post-translationally (117-121). Indeed, most 
lncRNAs transcribed from nuclear DNA form lncRNA-protein 
complexes (lncRNPs) that are essential for their function in 
both the nucleus and the cytoplasm. 

We reviewed mitochondrial lncRNAs derived from the 
mitochondrial genome (lncND5, lncND6, lncCyt b, SncmtRNA, 
ASncmtRNA1/2, and LIPCAR) and the nuclear genome 
(tRNAs, 5S rRNA, MRP RNA, and RNase P RNA). For many 
lncRNAs examined in molecular detail, the interacting protein 
partners (RBPs) (122, 123) have been associated with their 
function. Future studies should examine whether specific RBPs 
associated with lncRNAs function as import/export factors. 
Besides specialized RBPs, there might be a basic machinery 
that controls RNA mobilization. This machinery employs ATP 
and appears to rely on factors located in the mitochondrial 
outer membrane (OM) as well as on core components of the 
protein import pathway, the TOM/TIM complex (60). An 
earlier study in yeast suggested that the yeast Tom20 and 
Tim44 complexes were involved in translocating the 
cytoplasmic tRNALys into mitochondria (59). VDAC 
(voltage-dependent anion channel), an abundant structural 
protein in the OM, appeared to contribute to mitochondrial 
tRNA import in plants (124). It will be important to test in the 
near future if VDAC and/or other OM-associated proteins can 
recognize and capture cytosolic RNAs at the surface of 
mammalian mitochondria.

Composition and function of the mitoribosome (mitochondrial 
ribosome)
The mitochondrial ribosome (mitoribosome) has been iden-
tified in organisms from yeast to mammalian cells (125, 126), 
and was found to be poorly conserved in structure and 
composition among species. The mitoribosome is associated 
with the mitochondrial inner membrane, facing the matrix 
side, which enables it to insert highly hydrophobic nascent 
polypeptides easily upon translation (22, 127-130). Smirnov et 

al. proposed a model whereby the imported 5S rRNA 
associated with the mitoribosomal large subunit (LSU), 
affecting mitochondrial translation efficiency (18) and helping 
to explain the high abundance of 5S rRNAs found in 
mammalian mitochondria. However, a more recent study 
using cryo-EM provided alternative molecular evidence that 
mitoribosomal LSU has negligible or no 5S rRNA (131). 
Considering its vital roles for maintaining mitochondrial 
biogenesis and functions, the structural and functional RNA 
component of the mitoribosome also deserves in-depth 
investigation. 

Impact of mitochondrial RNA mobilization on cellular 
homeostasis and disease
Optimal mitochondrial activity is necessary for cell homeostasis. 
Accordingly, mitochondrial dysfunction has been linked to 
chronic neurodegenerative disorders including Alzheimer’s 
disease (AD), associated with the deposition of toxic A 
peptide and DNA damage caused by defective base excision 
repair (132-134), and Parkinson’s disease, caused by genetic 
alterations of PINK1, Parkin, DJ-1, and -Synuclein (135-138). 
In addition, increasing evidence suggests that mitochondrial 
dysfunction contributes to cardiovascular disease (139, 140), 
muscle atrophy (141), insulin resistance (142), chronic 
obstructive pulmonary disease (143), cancer cachexia (144), 
and neuromuscular disorders (145). Mitochondrial dysfunction 
associated with damage and mutations of the mitochondrial 
DNA has been linked to accelerated aging and age-related 
disease (146, 147).

As previously hypothesized, mitochondria-directed RNA can 
be used as an endogenous vector that is effectively mobilized 
into mitochondria, carrying inserted heterologous sequences. 
Theoretically, it seems possible to introduce a particular RNA 
sequence which is complementary to the mutated region of 
mitochondrial DNA, thereby lowering the replication 
efficiency and clearing the ‘bad’ mitochondria from cells 
(148). In fact, interventions devised to eliminate pathogenic 
mitochondrial DNA, involving the creation of a chimeric RNA 
bearing a mitochondrial import signal and a sequence 
proximal to the mitochondrial DNA mutation site, were 
recently reported (149). These and other strategies are under 
consideration as we develop molecular and pharmacological 
methods to intervene in disease processes linked to aberrant 
mitochondrial function.
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