• Title/Summary/Keyword: Cellular neural networks (CNN)

Search Result 12, Processing Time 0.032 seconds

A Study on the Number Recognition using Cellular Neural Network (Cellular Neural Network을 이용한 숫자인식에 관한 연구)

  • 전흥우;김명관;정금섭
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.6
    • /
    • pp.819-826
    • /
    • 2002
  • Cellular neural networks(CNN) are neural networks that have locally connected characteristics and real-time image processing. Locally connected characteristics are suitable for VLSI implementation. It also has applications in such areas as image processing and pattern recognition. In this thesis cellular neural networks are used for feature detection in number recognition at the stage of re-processing. The four or six directional shadow detectors are used in numbers recognition. At the stage of classification, this result of feature detection was simulated by using a multi-layer back Propagation neural network. The experiments indicate that the CNN feature detectors capture good features for number recognition tasks.

A Design of a Cellular Neural Network for the Real Image Processing (실영상처리를 위한 셀룰러 신경망 설계)

  • Kim Seung-Soo;Jeon Heung-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.283-290
    • /
    • 2006
  • The cellular neural networks have the structure that consists of an array of the same cell which is a simple processing element, and each of the cells has local connectivity and space invariant template properties. So, it has a very suitable structure for the hardware implementation. But, it is impossible to have a one-to-one mapping between the CNN hardware processors and the pixels of the practical large image. In this paper, a $5{\times}5$ CNN hardware processor with pipeline input and output that can be applied to the time-multiplexing processing scheme, which processes the large image with a small CNN cell block, is designed. the operation of the implemented $5{\times}5$ CNN hardware processor is verified from the edge detection and the shadow detection experimentations.

Potential Anomaly Separation and Archeological Site Localization Using Genetically Trained Multi-level Cellular Neural Networks

  • Bilgili, Erdem;Goknar, I. Cem;Albora, Ali Muhittin;Ucan, Osman Nuri
    • ETRI Journal
    • /
    • v.27 no.3
    • /
    • pp.294-303
    • /
    • 2005
  • In this paper, a supervised algorithm for the evaluation of geophysical sites using a multi-level cellular neural network (ML-CNN) is introduced, developed, and applied to real data. ML-CNN is a stochastic image processing technique based on template optimization using neighborhood relationships of the pixels. The separation/enhancement and border detection performance of the proposed method is evaluated by various interesting real applications. A genetic algorithm is used in the optimization of CNN templates. The first application is concerned with the separation of potential field data of the Dumluca chromite region, which is one of the rich reserves of Turkey; in this context, the classical approach to the gravity anomaly separation method is one of the main problems in geophysics. The other application is the border detection of archeological ruins of the Hittite Empire in Turkey. The Hittite civilization sites located at the Sivas-Altinyayla region of Turkey are among the most important archeological sites in history, one reason among others being that written documentation was first produced by this civilization.

  • PDF

Design of CNN Chip with annealing Capability (어닐링 기능을 갖는 CNN칩 설계)

  • 류성환;박병일정금섭전흥우
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1041-1044
    • /
    • 1998
  • In this paper the cellular neural networks with annealing capability is designed. The annealing capability helps the networks escape from the local-minimum points and quickly search for the global-minimum point. A 6$\times$6 CNN chip is designed using a $0.8\mu\textrm{m}$ CMOS technology, and the chip area is 2.89mm$\times$2.89mm. The simulation results for hole filling image processing show that the general CNN has a local-minimum problem, but the annealed CNN finds the global-minimum solutions very efficiently.

  • PDF

Image Pattern Classification and Recognition by Using the Associative Memory with Cellular Neural Networks (셀룰라 신경회로망의 연상메모리를 이용한 영상 패턴의 분류 및 인식방법)

  • Shin, Yoon-Cheol;Park, Yong-Hun;Kang, Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.154-162
    • /
    • 2003
  • In this paper, Associative Memory with Cellular Neural Networks classifies and recognizes image patterns as an operator applied to image process. CNN processes nonlinear data in real-time like neural networks, and made by cell which communicates with each other directly through its neighbor cells as the Cellular Automata does. It is applied to the optimization problem, associative memory, pattern recognition, and computer vision. Image processing with CNN is appropriate to 2-D images, because each cell which corresponds to each pixel in the image is simultaneously processed in parallel. This paper shows the method for designing the structure of associative memory based on CNN and getting output image by choosing the most appropriate weight pattern among the whole learned weight pattern memories. Each template represents weight values between cells and updates them by learning. Hebbian rule is used for learning template weights and LMS algorithm is used for classification.

Fast Pattern Classification with the Multi-layer Cellular Nonlinear Networks (CNN) (다층 셀룰라 비선형 회로망(CNN)을 이용한 고속 패턴 분류)

  • 오태완;이혜정;손홍락;김형석
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.9
    • /
    • pp.540-546
    • /
    • 2003
  • A fast pattern classification algorithm with Cellular Nonlinear Network-based dynamic programming is proposed. The Cellular Nonlinear Networks is an analog parallel processing architecture and the dynamic programing is an efficient computation algorithm for optimization problem. Combining merits of these two technologies, fast pattern classification with optimization is formed. On such CNN-based dynamic programming, if exemplars and test patterns are presented as the goals and the start positions, respectively, the optimal paths from test patterns to their closest exemplars are found. Such paths are utilized as aggregating keys for the classification. The algorithm is similar to the conventional neural network-based method in the use of the exemplar patterns but quite different in the use of the most likely path finding of the dynamic programming. The pattern classification is performed well regardless of degree of the nonlinearity in class borders.

An Implementation of the $5\times5$ CNN Hardware and the Pre.Post Processor ($5\times5$ CNN 하드웨어 및 전.후 처리기 구현)

  • Kim Seung-Soo;Jeon Heung-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.865-870
    • /
    • 2006
  • The cellular neural networks have shown a vast computing power for the image processing in spite of the simplicity of its structure. However, it is impossible to implement the CNN hardware which would require the same enormous amount of cells as that of the pixels involved in the practical large image. In this parer, the $5\times5$ CNN hardware and the pre post processor which can be used for processing the real large image with a time-multiplexing scheme are implemented. The implemented $5\times5$ CNN hardware and pre post processor is applied to the edge detection of $256\times256$ lena image to evaluate the performance. The total number of block. By the time-multiplexing process is about 4,000 blocks and to control pulses are needed to perform the pipelined operation or the each block. By the experimental resorts, the implemented $5\times5$ CNN hardware and pre post processor can be used to the real large image processing.

An Implementation of $5\times{5}$ CNN Hardware and Pre.Post Processor ($5\times{5}$ CNN 하드웨어 및 전.후 처리기 구현)

  • 김승수;정금섭;전흥우
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.416-419
    • /
    • 2003
  • The cellular neural networks have the circuit structure that differs from the form of general neural network. It consists of an array of the same cell which is a simple processing element, and each of the cells has local connectivity and space invariant template property. In this paper, time-multiplex image processing technique is applied for processing large images using small size CNN cell block, and we simulate the edge detection of a large image using the simulator implemented with a c program and matlab model. A 5$\times$5 CNN hardware and pre post processor is also implemented and is under test.

  • PDF

Design of CNN Chip with Annealing Capability (어닐링 기능을 갖는 셀룰러 신경망 칩 설계)

  • 유성환;전흥우
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.11
    • /
    • pp.46-54
    • /
    • 1999
  • The output values of cellular neural networks would have errors because they can be stabilized at local minimums depending on the initial states of each cell. So, in this paper, we design the $6\times6$cellular neural networks with annealing capability which guarantees that the outputs reaches the global minimum to have correct output values independent of the initial states of each cell. This chip is designed using a $0.8\mu\textrm{m}$ CMOS technology The designed chip contains about 15,000 transistors and the chip size is about $2.89\times2.89\textrm{mm}^2$. The simulation results of edge extraction and hole filling using the designed circuit show that the outputs values would have errors in un-annealed case, but not in annealed case. In the simulation, the annealing time of $3\musec$ is employed.

  • PDF

Design of a Time-Multiplexing CNN Chip (시다중처리 셀룰러 신경망 칩설계)

  • 박병일;정금섭;전흥우;신경욱
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.2
    • /
    • pp.505-516
    • /
    • 2000
  • Cellular Neural Networks(CNN) is a nonlinear information-processing system that has a locally connected characteristic and is widely used in the real-time high speed image processing. In this paper, a practical system approach of time-multiplexing CNN implementations suitable for processing large and complex images using small CNN arrays is presented and $6\times6$ CNN hardware is designed for the processing of a large image. While previous implementations are mostly suitable for black and white applications because of the thresholded outputs, our approach is especially suitable for applications in gray image processing due to the analog nature of the state node. CNN chip is designed using a 0.65${\mu}{\textrm}{m}$ 2P2M(double poly, double metal) N-Well CMOS process technology. It contains about 15,400 devices on an area of about $1.85\times1.75$ md. The designed $6\times6$ CNN is tested for the edge detection of a large image input and it's performance is verified.

  • PDF