• Title/Summary/Keyword: Cellular immune

Search Result 793, Processing Time 0.032 seconds

Viral Inhibition of PRR-Mediated Innate Immune Response: Learning from KSHV Evasion Strategies

  • Lee, Hye-Ra;Choi, Un Yung;Hwang, Sung-Woo;Kim, Stephanie;Jung, Jae U.
    • Molecules and Cells
    • /
    • v.39 no.11
    • /
    • pp.777-782
    • /
    • 2016
  • The innate immune system has evolved to detect and destroy invading pathogens before they can establish systemic infection. To successfully eradicate pathogens, including viruses, host innate immunity is activated through diverse pattern recognition receptors (PRRs) which detect conserved viral signatures and trigger the production of type I interferon (IFN) and pro-inflammatory cytokines to mediate viral clearance. Viral persistence requires that viruses co-opt cellular pathways and activities for their benefit. In particular, due to the potent antiviral activities of IFN and cytokines, viruses have developed various strategies to meticulously modulate intracellular innate immune sensing mechanisms to facilitate efficient viral replication and persistence. In this review, we highlight recent advances in the study of viral immune evasion strategies with a specific focus on how Kaposi's sarcoma-associated herpesvirus (KSHV) effectively targets host PRR signaling pathways.

A Fuzzy Continuous Petri Net Model for Helper T cell Differentiation

  • Park, In-Ho;Na, Do-Kyun;Lee, Kwang-H.;Lee, Do-Heon
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.344-347
    • /
    • 2005
  • Helper T(Th) cells regulate immune response by producing various kinds of cytokines in response to antigen stimulation. The regulatory functions of Th cells are promoted by their differentiation into two distinct subsets, Th1 and Th2 cells. Th1 cells are involved in inducing cellular immune response by activating cytotoxic T cells. Th2 cells trigger B cells to produce antibodies, protective proteins used by the immune system to identify and neutralize foreign substances. Because cellular and humoral immune responses have quite different roles in protecting the host from foreign substances, Th cell differentiation is a crucial event in the immune response. The destiny of a naive Th cell is mainly controlled by cytokines such as IL-4, IL-12, and IFN-${\gamma}$. To understand the mechanism of Th cell differentiation, many mathematical models have been proposed. One of the most difficult problems in mathematical modeling is to find appropriate kinetic parameters needed to complete a model. However, it is relatively easy to get qualitative or linguistic knowledge of a model dynamics. To incorporate such knowledge into a model, we propose a novel approach, fuzzy continuous Petri nets extending traditional continuous Petri net by adding new types of places and transitions called fuzzy places and fuzzy transitions. This extension makes it possible to perform fuzzy inference with fuzzy places and fuzzy transitions acting as kinetic parameters and fuzzy inference systems between input and output places, respectively.

  • PDF

HIF-1α-Dependent Gene Expression Program During the Nucleic Acid-Triggered Antiviral Innate Immune Responses

  • Hong, Sun Woo;Yoo, Jae Wook;Kang, Hye Suk;Kim, Soyoun;Lee, Dong-ki
    • Molecules and Cells
    • /
    • v.27 no.2
    • /
    • pp.243-250
    • /
    • 2009
  • Recent studies suggest a novel role of $HIF-1{\alpha}$ under nonhypoxic conditions, including antibacterial and antiviral innate immune responses. However, the identity of the pathogen-associated molecular pattern which triggers $HIF-1{\alpha}$ activation during the antiviral response remains to be identified. Here, we demonstrate that cellular administration of double-stranded nucleic acids, the molecular mimics of viral genomes, results in the induction of $HIF-1{\alpha}$ protein level as well as the increase in $HIF-1{\alpha}$ target gene expression. Whole-genome DNA microarray analysis revealed that double-stranded nucleic acid treatment triggers induction of a number of hypoxia-inducible genes, and induction of these genes are compromised upon siRNA-mediated $HIF-1{\alpha}$ knock-down. Interestingly, $HIF-1{\alpha}$ knock-down also resulted in down-regulation of a number of genes involved in antiviral innate immune responses. Our study demonstrates that $HIF-1{\alpha}$ activation upon nucleic acid-triggered antiviral innate immune responses plays an important role in regulation of genes involved in not only hypoxic response, but also immune response.

Effect of Bupleurum falcatum extract on cellular immune responses (시호 추출물이 세포성 면역반응에 미치는 영향)

  • Jung, Young-mee;Kim, Jong-myeon;Song, Hee-jong;Cho, Jeong-goen
    • Korean Journal of Veterinary Research
    • /
    • v.33 no.3
    • /
    • pp.407-417
    • /
    • 1993
  • Bupleurum falcatum has been used for treatment of inflammation, jaundice, influenza and hepatitis as a traditional orient folk medicine. This experiment was carried out to evaluate the effect of B falcatum extract on cellular immune responses in vivo and in vitro. Antigen binding cell(ABC) assay, antibody production, Arthus and delayed-type hypersensitivity(DTH) reaction against sheep erythrocytes(SRBC) were very depressed in B falcatum extract treated group in vivo. The growth of Staphylococcus aureus in brain heart infusion(BHI) broth containing B falcatum extract was remarkably inhibited. Otherwise, that of Salmonella typhyimurium was not significantly increased in vitro. When B falcatum extract pretreated mice were intraperitoneally(IP) injected S typhimurium and S aureus, respectively, the number of bacteria in peritoneal exudates were time dependent declination compared with those of control, and the weight of spleen and the number of macrophage migration into peritoneal cavity have no difference from those of untreated control. B falcatum extract gradually increased phagocytic activities of peritoneal macrophage against Candida albicans time and dose dependently, and was not significant production of migration inhibiotory factor(MIF). But migration abilities of normal leucocytes in B falcatum extract pretreated group were decreased dose dependently. When B falcatum extract was IP administered, these data indicate that B falcatum extract increases level of serum coticosterone. Therefore, B falcatum extract was indirectly mediated in immune system by serum coticosterone having relation to immunosuppression. These results lead to the conclusion that B falcatum extract acts as a trigger or regulator of cellular immune responses in immune system.

  • PDF

Induction of apoptosis in mouse spleen cells by Ginsenoside Rp1 (마우스 비장세포에서 Ginsenoside Rp1의 세포자멸사 유도)

  • Oh, Young-Kyun;Joo, Hong-Gu
    • Korean Journal of Veterinary Research
    • /
    • v.53 no.3
    • /
    • pp.143-147
    • /
    • 2013
  • Ginsenoside Rp1 is one of ginseng saponins with chemotherapeutic activity. In this study, we investigated the effects of Rp1 on spleen cells. Spleen is a major immune organ consisted of crucial immune cells, such as T lymphocytes, B lymphocytes, natural killer cells, and some antigen-presenting cells. Although the anti-tumor potential of Rp1 was studied, the effects of Rp1 on immune cells have not investigated yet. A viability assay using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), flow cytometric analysis, Western blot analysis were used to detect cellular changes on Rp1-treated spleen cells. MTT assay showed that Rp1 decreased the viability of spleen cells. To further investigate the effects of Rp1 on activated spleen cells, we treated lipopolysaccharide (LPS) as a representative inflammatory agent and Rp1 on spleen cells in a combination. The surface expression levels of activation markers for lymphocytes, CD25 and CD69 were measured. Apoptotic analysis revealed the cytotoxic effects of Rp1 on both na$\ddot{i}$ve and activated cells, and the expression pattern of some apoptosis-related proteins was correlated to apoptotic events of cells. Taken together, ginsenoside Rp1 increases the cellular death of spleen cells and also inhibits the LPS-induced activation of spleen cells.

Respiratory Syncytial Virus (RSV) Modulation at the Virus-Host Interface Affects Immune Outcome and Disease Pathogenesis

  • Tripp, Ralph A.
    • IMMUNE NETWORK
    • /
    • v.13 no.5
    • /
    • pp.163-167
    • /
    • 2013
  • The dynamics of the virus-host interface in the response to respiratory virus infection is not well-understood; however, it is at this juncture that host immunity to infection evolves. Respiratory viruses have been shown to modulate the host response to gain a replication advantage through a variety of mechanisms. Viruses are parasites and must co-opt host genes for replication, and must interface with host cellular machinery to achieve an optimal balance between viral and cellular gene expression. Host cells have numerous strategies to resist infection, replication and virus spread, and only recently are we beginning to understand the network and pathways affected. The following is a short review article covering some of the studies associated with the Tripp laboratory that have addressed how respiratory syncytial virus (RSV) operates at the virus-host interface to affects immune outcome and disease pathogenesis.

Effect of Panax ginseng Extracts on the Immunotoxicity of Ethanol (Ethanol의 면역독성에 대한 인삼엑기스의 영향)

  • 안영근;김정훈;이병준
    • Environmental Analysis Health and Toxicology
    • /
    • v.3 no.3_4
    • /
    • pp.29-37
    • /
    • 1988
  • Experiments were performed on mice to investigate the effect of panax ginseng extracts on the immunotoxicity of ethanol. Immune response were evaluated by antibody production, Arthus reaction, delayed type hypersensitivity (DTH), Rosette froming cell (RFC) and macrophage activity in mice, sensitized and challenged with sheep red blood cells. The weight of liver, spleen and thymus were measured. Following results obtained in this experiment. The exposure of ethanol decreased humoral and cellular immune response, the body weight and macrophage activity. Ginseng extracts such as ethanol extract, petroleum ether extract and n-butanol fraction were significantly increased the body weight. The administration of ginseng ethanol extract and ginseng petroleum ether extract were restored or increased humoral and cellular immune response. Macrophage activity was decreased by ethanol, but restored by the ginseng extracts.

  • PDF

Crosstalk between the Producers and Immune Targets of IL-9

  • Van Anh Do-Thi;Jie-Oh Lee;Hayyoung Lee;Young Sang Kim
    • IMMUNE NETWORK
    • /
    • v.20 no.6
    • /
    • pp.45.1-45.16
    • /
    • 2020
  • IL-9 has been reported to play dual roles in the pathogenesis of autoimmune disorders and cancers. The collaboration of IL-9 with microenvironmental factors including the broader cytokine milieu and other cellular components may provide important keys to explain its conflicting effects in chronic conditions. In this review, we summarize recent findings on the cellular sources of, and immunological responders to IL-9, in order to interpret the role of IL-9 in the regulation of immune responses. This knowledge will provide new perspectives to improve clinical benefits and limit adverse effects of IL-9 when treating pathologic conditions.

Nrf2 in TIME: The Emerging Role of Nuclear Factor Erythroid 2-Related Factor 2 in the Tumor Immune Microenvironment

  • Jialin Feng;Oliver J. Read;Albena T. Dinkova-Kostova
    • Molecules and Cells
    • /
    • v.46 no.3
    • /
    • pp.142-152
    • /
    • 2023
  • Nuclear factor erythroid 2-related factor 2 (Nrf2) mediates the cellular antioxidant response, allowing adaptation and survival under conditions of oxidative, electrophilic and inflammatory stress, and has a role in metabolism, inflammation and immunity. Activation of Nrf2 provides broad and long-lasting cytoprotection, and is often hijacked by cancer cells, allowing their survival under unfavorable conditions. Moreover, Nrf2 activation in established human tumors is associated with resistance to chemo-, radio-, and immunotherapies. In addition to cancer cells, Nrf2 activation can also occur in tumor-associated macrophages (TAMs) and facilitate an anti-inflammatory, immunosuppressive tumor immune microenvironment (TIME). Several cancer cell-derived metabolites, such as itaconate, L-kynurenine, lactic acid and hyaluronic acid, play an important role in modulating the TIME and tumor-TAMs crosstalk, and have been shown to activate Nrf2. The effects of Nrf2 in TIME are context-depended, and involve multiple mechanisms, including suppression of proinflammatory cytokines, increased expression of programmed cell death ligand 1 (PD-L1), macrophage colony-stimulating factor (M-CSF) and kynureninase, accelerated catabolism of cytotoxic labile heme, and facilitating the metabolic adaptation of TAMs. This understanding presents both challenges and opportunities for strategic targeting of Nrf2 in cancer.