• Title/Summary/Keyword: Cellular capacity

Search Result 505, Processing Time 0.028 seconds

Morroniside Protects C2C12 Myoblasts from Oxidative Damage Caused by ROS-Mediated Mitochondrial Damage and Induction of Endoplasmic Reticulum Stress

  • Hyun Hwangbo;Cheol Park;EunJin Bang;Hyuk Soon Kim;Sung-Jin Bae;Eunjeong Kim;Youngmi Jung;Sun-Hee Leem;Young Rok Seo;Su Hyun Hong;Gi-Young Kim;Jin Won Hyun;Yung Hyun Choi
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.349-360
    • /
    • 2024
  • Oxidative stress contributes to the onset of chronic diseases in various organs, including muscles. Morroniside, a type of iridoid glycoside contained in Cornus officinalis, is reported to have advantages as a natural compound that prevents various diseases. However, the question of whether this phytochemical exerts any inhibitory effect against oxidative stress in muscle cells has not been well reported. Therefore, the current study aimed to evaluate whether morroniside can protect against oxidative damage induced by hydrogen peroxide (H2O2) in murine C2C12 myoblasts. Our results demonstrate that morroniside pretreatment was able to inhibit cytotoxicity while suppressing H2O2-induced DNA damage and apoptosis. Morroniside also significantly improved the antioxidant capacity in H2O2-challenged C2C12 cells by blocking the production of cellular reactive oxygen species and mitochondrial superoxide and increasing glutathione production. In addition, H2O2-induced mitochondrial damage and endoplasmic reticulum (ER) stress were effectively attenuated by morroniside pretreatment, inhibiting cytoplasmic leakage of cytochrome c and expression of ER stress-related proteins. Furthermore, morroniside neutralized H2O2-mediated calcium (Ca2+) overload in mitochondria and mitigated the expression of calpains, cytosolic Ca2+-dependent proteases. Collectively, these findings demonstrate that morroniside protected against mitochondrial impairment and Ca2+-mediated ER stress by minimizing oxidative stress, thereby inhibiting H2O2-induced cytotoxicity in C2C12 myoblasts.

Synergistic Effect of Hydrogen and 5-Aza on Myogenic Differentiation through the p38 MAPK Signaling Pathway in Adipose-Derived Mesenchymal Stem Cells

  • Wenyong Fei;Erkai Pang;Lei Hou;Jihang Dai;Mingsheng Liu;Xuanqi Wang;Bin Xie;Jingcheng Wang
    • International Journal of Stem Cells
    • /
    • v.16 no.1
    • /
    • pp.78-92
    • /
    • 2023
  • Background and Objectives: This study aims to clarify the systems underlying regulation and regulatory roles of hydrogen combined with 5-Aza in the myogenic differentiation of adipose mesenchymal stem cells (ADSCs). Methods and Results: In this study, ADSCs acted as an in vitro myogenic differentiating mode. First, the Alamar blue Staining and mitochondrial tracer technique were used to verify whether hydrogen combined with 5-Aza could promote cell proliferation. In addition, this study assessed myogenic differentiating markers (e.g., Myogenin, Mhc and Myod protein expressions) based on the Western blotting assay, analysis on cellular morphological characteristics (e.g., Myotube number, length, diameter and maturation index), RT-PCR (Myod, Myogenin and Mhc mRNA expression) and Immunofluorescence analysis (Desmin, Myosin and 𝛽-actin protein expression). Finally, to verify the mechanism of myogenic differentiation of hydrogen-bound 5-Aza, we performed bioinformatics analysis and Western blot to detect the expression of p-P38 protein. Hydrogen combined with 5-Aza significantly enhanced the proliferation and myogenic differentiation of ADSCs in vitro by increasing the number of single-cell mitochondria and upregulating the expression of myogenic biomarkers such as Myod, Mhc and myotube formation. The expressions of p-P38 was up-regulated by hydrogen combined with 5-Aza. The differentiating ability was suppressed when the cells were cultivated in combination with SB203580 (p38 MAPK signal pathway inhibitor). Conclusions: Hydrogen alleviates the cytotoxicity of 5-Aza and synergistically promotes the myogenic differentiation capacity of adipose stem cells via the p38 MAPK pathway. Thus, the mentioned results present insights into myogenic differentiation and are likely to generate one potential alternative strategy for skeletal muscle related diseases.

THE ASPECT OF PROLIFERATION AND BONE NODULE FORMATION IN OSTEOBLAST-LIKE CELLS DERIVED FROM FETAL RAT CALVARIA IN VITRO (백서 태자 두 개관에서 유래된 조골세포의 증식 및 골결절 형성양상)

  • Kim, Shi-Hyeong;Nam, Soon-Hyeun;Shin, Hong-In
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.24 no.1
    • /
    • pp.1-17
    • /
    • 1997
  • The purpose of this study was to investigate the aspects of proliferation and bone nodule formation of osteogenic precursor cells. To determine the effects of ascorbic acid and dexamethasone upon capacity of osteoblast proliferation and bone nodule formation, cells were maintained in the presence of one or some of these additives for up to 30 days. Group I culture was maintained in standard medium(DMEM plus 10% plus antibiotics), group II was maintained in supplemented medium containing dexamethasone, group III was maintained in supplemented medium containing ascorbic acid and sodium-${\beta}$-glycerophosphate, and group IV was maintained in supplemented containing ascorbic acid, sodium-${\beta}$-glycerophosphate and dexamethasone. Morphology of bone nodules was observed with light microscope and electron microscope. The results were as follows: ${\bullet}$ Proliferation capacity of osteoblasts was not affected by single use of dexamethasone, but it was chiefly affected by ascorbic acid. ${\bullet}$ Cellular morphology was fibroblastic appearance initially, but, it was gradually changed to polygonal shape accompanied by confluency stage. ${\bullet}$ Pluripotent mesenchymal cells existed during primary culture, they were differentiated to adipocyte, chondrocyte, osteocyte according to culture condition. ${\bullet}$ Dexamethasone increased bone nodule formation under the condition that the culture was maintained with supplemented medium ascorbic acid and sodium-${\beta}$-glycerophosphate. ${\bullet}$ when the cultures were stained with alizarin red, the group supplemented with dexamethasone, ascorbic acid and sodium-${\beta}$-glycerophosphate showed the marked increase of bone nodule formation, but the group supplemented with ascorbic acid and sodium-${\beta}$-glycerophosphate revealed only small amounts of bone nodules. And the groups cultured without ascorbic acid showed no observed any of bone-like mass independent of dexamethasone addition.

  • PDF

Effects of Fermentation on the Metabolic Activities of Pine Needle Juice (발효과정이 솔잎 착즙액의 항산화, alpha-Glucosidase 및 Angiotensin Converting Enzyme 저해 활성에 미치는 영향)

  • Kim, So-Yun;Lee, Hyun-Jung;Park, Jae-Hee;Kim, Rae-Young;Cheong, Hyeonsook;Park, Eunju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.3
    • /
    • pp.325-334
    • /
    • 2013
  • The objective of this study was to compare the content and metabolic activities between fresh pine needle juice (PNJ) and fermented pine needle juice (FPNJ). A variety of factors were measured, including total phenolic content (TPC), antioxidant activity [DPPH radical scavenging activity (RSA), total radical-trapping antioxidant potential (TRAP), oxygen radical absorbance capacity (ORAC), cellular antioxidant capacity (CAC)], anti-genotoxic activity, ${\alpha}$-glucosidase inhibitory activity, and angiotensin converting enzyme (ACE) inhibitory activity. The TPC was $17.3{\pm}0.2$ and $4.6{\pm}0.0$ mg GAE/g in PNJ and FPNJ, respectively. The DPPH RSA, TRAP, and ORAC values increased in a dose-dependent manner for both PNJ and FPNJ, with significantly higher activities in PNJ than FPNJ. The CAC against AAPH-induced oxidative stress in HepG2 cells was protected by both PNJ and FPNJ. Pretreatment with PNJ and FPNJ in human leukocytes produced significant reductions in $H_2O_2$-induced DNA damage at a concentration of $50{\mu}g/mL$. ${\alpha}$-Glucosidase inhibitory activity was significantly higher in FPNJ than PNJ. The ACE inhibitory activity was about 87.1% and 60.0% in 1:1 diluted PNJ and FPNJ, respectively. This study suggests that the fermentation of PNJ could enhance the regulation of blood glucose metabolism and both PNJ and FPNJ might be a new potential source of natural antioxidant, anti-diabetic, and anti-hypertensive agents applicable to food.

Improvement of Proliferation Capacity of Non-adapted CHO Cells Subcultured Using Serum Free Media in Long-term Culture (무혈청 배지에서 계대배양한 비적응 CHO(Chinese Hamster Ovary) 세포의 증식력 개선에 관한 연구)

  • Lee, Seung-Sun;Lee, Jin-Sung;Byun, Soon-Hyu;Park, Hong-Woo;Choe, Tae-Boo
    • KSBB Journal
    • /
    • v.21 no.4
    • /
    • pp.248-254
    • /
    • 2006
  • Animal cell culture industry has a large market and an exponential growth rate among biological industry field. Chines hamster ovary(CHO) cells are the most widely used cell lines for recombinant protein production. They can avoid infection from polio, herpes, hepatitis B, HIV, measles, adenovirus and etc. Moreover it is easy to transfection recombinant genes and possible to suspension culture. Serum free media is one of the most important factor of protein production. Because serum has problems. Serum is not defined the contents until now, it has a number of proteins, lipids, carbohydrates and unknown molecules that cause of risk involve in infection and high cost of product purification. CHO cell line cultured using serum free media were the basis of a very successful method to produce(glyco-)protein in mammalian cells, which are then used as pharmaceutical products. Also, the low protein content of the developed medium facilitates downstream processing and product purification. But non-adapted CHO cells have a limit of proliferation cultured using serum free media and it takes very long time to adapt non-adapted cells to serum free media. There are a number of causes of a limit of proliferation using serum free media. Absence of growth factors and growth stimulating molecules is a major factor of the reasons. It makes growth signals and moves cell cycle. And increase of cellular stress is another reason. It induces increase of intraceullar ROS concentration. The purpose of this study is about improvement of proliferation capacity of non-adapted CHO cells cultured using serum free media without adaptation process.

Effects of Red-ginseng Extracts on the Activation of Dendritic Cells (고려홍삼의 수지상세포 활성화 효과)

  • Kim, Do-Soon;Park, Jueng-Eun;Seo, Kwon-Il;Ko, Sung-Ryong;Lee, Jong-Won;Do, Jae-Ho;Yee, Sung-Tae
    • Journal of Ginseng Research
    • /
    • v.30 no.3
    • /
    • pp.117-127
    • /
    • 2006
  • Ginseng is a medicinal herb widely used in Asian countries. Dendritic cells(DCs) play a pivotal role in the initiation of T cell-mediated immune responses, making them an attractive cellular adjuvant for use in cancer vaccines. In this study, we examined the effects of Red-ginseng(water extract, edible and fermented ethyl alcohol extract, crude saponin) on the DCs phenotypic and functional maturation. Immature DCs were cultured in the presence of GM-CSF and IL-4, and the generated immature DCs were stimulated by water extract, edible and fermented ethyl alcohol extract, crude saponin and LPS, respectively, for 24hours. The expression of surface co-stimulatory molecules, including MHC(major histocompatibility complex) class II, CD40, CD80 and CD86, was increased on DCs that were stimulated with crude saponin, but antigen-uptake capacity was decreased. The antigen-presenting capacity of Red-ginseng extracts-treated DCs as analyzed by allogeneic T cells proliferation and IL-2, $IFN-{\gamma}$ production was increased. Furthermore, $CD4^+$ and $CD8^+$ syngeneic T cell(OVA-specific) proliferation and $IFN-{\gamma}$ production was significantly increased. However, $CD4^+$ syngeneic T cell secreted higher levels of IL-2 in responding but not $CD8^+$ syngeneic T cell. These results indicate the immunomodulatory properties of Red-ginseng extracts, which might be therapeutically useful in the control of cancers and immunodeficient diseases through the up-regulation of DCs maturation.

Antimicrobial, Antioxidant and Cellular Protective Effects against Oxidative Stress of Anemarrhena asphodeloides Bunge Extract and Fraction (지모 뿌리 추출물과 분획물의 항균활성과 항산화 활성 및 세포보호 연구)

  • Lee, Yun Ju;Song, Ba Reum;Lee, Sang Lae;Shin, Hyuk Soo;Park, Soo Nam
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.4
    • /
    • pp.360-371
    • /
    • 2018
  • Extracts and fractions of Anemarrhena asphodeloides Bunge were prepared and their physiological activities and components were analyzed. Antimicrobial activities of the ethyl acetate and aglycone fractions were $78{\mu}g/ml$ and $31{\mu}g/ml$, respectively, for Staphylococcus aureus and $156{\mu}g/ml$ and $125{\mu}g/ml$, respectively, for Pseudomonas aeruginosa. 1,1-Diphenyl-2-picrylhydrazyl free radical scavenging activities ($FSC_{50}$) of 50% ethanol extract, ethyl acetate fraction, and aglycone fraction of A. asphodeloides extracts were $146.2{\mu}g/ml$, $23.19{\mu}g/ml$, and $71.06{\mu}g/ml$, respectively. The total antioxidant capacity ($OSC_{50}$) in an $Fe^{3+}$-EDTA/hydrogen peroxide ($H_2O_2$) system were $17.5{\mu}g/ml$, $1.5{\mu}g/ml$, and $1.4{\mu}g/ml$, respectively. The cytoprotective effect (${\tau}_{50}$) in $^1O_2$-induced erythrocyte hemolysis was 181 min with $4{\mu}g/ml$ of the aglycone fraction. The ${\tau}_{50}$ of the aglycone fraction was approximately 4-times higher than that of (+)-${\alpha}$-tocopherol (${\tau}_{50}$, 41 min). Analysis of $H_2O_2$-induced damage of HaCaT cells revealed that the maximum cell viabilities for the 50% ethanol extract, ethyl acetate fraction, and aglycone fraction were 86.23%, 86.59%, and 89.70%, respectively. The aglycone fraction increased cell viability up to 11.53% at $1{\mu}g/ml$ compared to the positive control treated with $H_2O_2$. Analysis of ultraviolet B radiation-induced HaCaT cell damage revealed up to 41.77% decreased intracellular reactive oxygen species in the $2{\mu}g/ml$ aglycone fraction compared with the positive control treated with ultraviolet B radiation. The findings suggest that the extracts and fractions of A. asphodeloides Bunge have potential applications in the field of cosmetics as natural preservatives and antioxidants.

Transformation of Asbestos-Containing Slate Using Exothermic Reaction Catalysts and Heat Treatment (발열반응 촉매제와 열처리를 이용한 석면함유 슬레이트의 무해화 연구)

  • Yoon, Sungjun;Jeong, Hyeonyi;Park, Byungno;Kim, Yongun;Kim, Hyesu;Park, Jaebong;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.627-635
    • /
    • 2019
  • Cement-asbestos slate is the main asbestos containing material. It is a product made by combining 10~20% of asbestos and cement components. Man- and weathering-induced degradation of the cement-asbestos slates makes them a source of dispersion of asbestos fibres and represents a priority cause of concern. When the asbestos enters the human body, it causes cellular damage or deformation, and is not discharged well in vitro, and has been proven to cause diseases such as lung cancer, asbestos, malignant mesothelioma and pleural thickening. The International Agency for Research on Cancer (IARC) has designated asbestos as a group 1 carcinogen. Currently, most of these slats are disposed in a designated landfill, but the landfill capacity is approaching its limit, and there is a potential risk of exposure to the external environment even if it is land-filled. Therefore, this study aimed to exam the possibility of detoxification of asbestos-containing slate by using exothermic reaction and heat treatment. Cement-asbestos slate from the asbestos removal site was used for this experiment. Exothermic catalysts such as calcium chloride(CaCl2), magnesium chloride(MgCl2), sodium hydroxide(NaOH), sodium silicate(Na2SiO3), kaolin[Al2Si2O5(OH)4)], and talc[Mg3Si4O10(OH)2] were used. Six catalysts were applied to the cement-asbestos slate, respectively and then analyzed using TG-DTA. Based on the TG-DTA results, the heat treatment temperature for cement-asbestos slate transformation was determined at 750℃. XRD, SEM-EDS and TEM-EDS analyses were performed on the samples after the six catalysts applied to the slate and heat-treated at 750℃ for 2 hours. It was confirmed that chrysotile[Mg3Si2O5(OH5)] in the cement-asbestos slate was transformed into forsterite (Mg2SiO4) by catalysts and heat treatment. In addition, the change in the shape of minerals was observed by applying a physical force to the slate and the heat treated slate after coating catalysts. As a result, the chrysotile in the cement-asbestos slate maintained fibrous form, but the cement-asbestos slate after heat treatment of applying catalyst was broken into non-fibrous form. Therefore, this study shows the possibility to safely verify the complete transformation of asbestos minerals in this catalyst- and temperature-induced process.

Antioxidant Activities and Cytoprotective Effects of Lonicera japonica Thunb. Extract and Fraction against Oxidative Stress (인동덩굴 추출물과 분획물의 항산화 활성 및 산화적 스트레스에 대한 세포 보호 효과)

  • Lee, Ye Seul;Yun, Mid Eum;Lee, Yun Ju;Park, Young Min;Lee, Sang Lae;Park, Soo Nam
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.1
    • /
    • pp.18-28
    • /
    • 2018
  • In this study, the antioxidant activities and cytoprotective effects against oxidative stress of Lonicera japonica Thunb. 50% ethanol extract and ethyl acetate fraction were investigated. Using the 1,1-diphenyl-2-picrylhydrazyl assay, the free radical scavenging activity (FSC50) of L. japonica Thunb. 50% ethanol extract and ethyl acetate fraction was determined as 152.00 and $77.25{\mu}g/ml$, respectively. To measure the reactive oxygen species (ROS) scavenging activity, the total antioxidant capacity (OSC50) was determined by using a luminol-dependent chemiluminescence assay. The antioxidant activity of the ethyl acetate fraction ($0.33{\mu}g/ml$) was approximately four times stronger than that of the 50% ethanol extract ($1.12{\mu}g/ml$). The protective effect against $^1O_2$-induced cellular damage of human erythrocytes (${\tau}_{50}$) was 46.0 min at $10{\mu}g/ml$ of the 50% ethanol extract and 52.3 min at $1{\mu}g/ml$ of the ethyl acetate fraction. We also investigated the cytoprotective effects against oxidative stress induced by $H_2O_2$ and the intracellular ROS scavenging activity in response to UVB irradiation and found that the extract and fraction protected human skin cells from damage and reduced ROS. These results confirmed that L. japonica Thunb. was a valuable plant-derived natural antioxidant with potential for development as an antioxidative functional ingredient.

Pupal Drone Extracts for Anti-wrinkle and Skin-lightening Materials (수벌번데기 추출물의 주름개선 및 미백효과 구명)

  • Kim, Jung-Eun;Kim, Do-Ik;Koo, Hui-Yeon;Kim, Hyeon-Jin;Kim, Seong-Yeon;Lee, Yoo-Beom;Moon, Jae-Hak;Choi, Yong-Soo
    • Journal of Life Science
    • /
    • v.30 no.5
    • /
    • pp.428-433
    • /
    • 2020
  • In this study, we created pupal stage extracts of Apis mellifera L. drones for use in cosmetic materials. The effect of the drone pupae extract (DPE) on HDF cells was assessed for analysis of anti-wrinkle activity by collagen or collagenase gene expression, and the skin-lightening effect was studied by in vitro tyrosinase inhibition and B16F10 melanoma assay; the two cells were found to be non-cellular when the concentration of DPE was 100 ㎍/ml. Albutin concentration (positive control) in the whitening test was set at a capacity of 100 ug/ml and m-melanocyte stimulating hormone (α-MSH). A melanin-producing induction material was set at a concentration of 100 nM, and the expression of collagen type I and MMP1 collagenase was measured using HDF cells. MMP1 expression was seen to reduce in a concentration-dependent manner in treatment with DPE. Inhibiting melanin generation with B16F12 cells indicated a tendency to decrease in the DPE treatment group. Both L-Tyrosine and L-DOPA as DPE were used in an in vitro tyrosinase induction test to demonstrate the effects of tyrosinase suppression on concentrations. The higher the concentration of DPE, the greater the wrinkle reduction and whitening effect. In conclusion, it was found that DPE is an effective smoothing and whitening material by increasing collagen generation and inhibiting collagenase expression and reducing melanin production.