Improvement of Proliferation Capacity of Non-adapted CHO Cells Subcultured Using Serum Free Media in Long-term Culture

무혈청 배지에서 계대배양한 비적응 CHO(Chinese Hamster Ovary) 세포의 증식력 개선에 관한 연구

  • 이승선 (건국대학교 미생물 공학과) ;
  • 이진성 (건국대학교 미생물 공학과) ;
  • 변순휘 (건국대학교 미생물 공학과) ;
  • 박홍우 (한양대학교 화학공학과) ;
  • 최태부 (건국대학교 미생물 공학과)
  • Published : 2006.08.30

Abstract

Animal cell culture industry has a large market and an exponential growth rate among biological industry field. Chines hamster ovary(CHO) cells are the most widely used cell lines for recombinant protein production. They can avoid infection from polio, herpes, hepatitis B, HIV, measles, adenovirus and etc. Moreover it is easy to transfection recombinant genes and possible to suspension culture. Serum free media is one of the most important factor of protein production. Because serum has problems. Serum is not defined the contents until now, it has a number of proteins, lipids, carbohydrates and unknown molecules that cause of risk involve in infection and high cost of product purification. CHO cell line cultured using serum free media were the basis of a very successful method to produce(glyco-)protein in mammalian cells, which are then used as pharmaceutical products. Also, the low protein content of the developed medium facilitates downstream processing and product purification. But non-adapted CHO cells have a limit of proliferation cultured using serum free media and it takes very long time to adapt non-adapted cells to serum free media. There are a number of causes of a limit of proliferation using serum free media. Absence of growth factors and growth stimulating molecules is a major factor of the reasons. It makes growth signals and moves cell cycle. And increase of cellular stress is another reason. It induces increase of intraceullar ROS concentration. The purpose of this study is about improvement of proliferation capacity of non-adapted CHO cells cultured using serum free media without adaptation process.

본 연구에서는 CHO 세포를 이용해 세포를 별도의 적응기간 없이 무혈청 배지에서 배양했을 때 세포의 증식이 중단되는 원인을 찾고 배지 첨가 성분을 통해 이를 개선하고자 했다. 현재 개발된 무혈청 배지는 아직까지 혈청을 대체할 만한 성분을 포함하고 있지 않다. 때문에 무혈청 배지에 적응되지 않은 비적응 세포의 경우 계대 배양에 한계가 있다. 이런 한계가 나타나는 원인은 다양할 것으로 생각이 되지만 혈청의 부재로 인해 세포가 받게 되는 스트레스와 그로 인한 세포주기의 정지가 가장 근본적인 원인으로 생각된다. 무혈청 배지에서 세포가 받는 스트레스의 정도를 알아보고 배양 환경과 첨가물에 따른 ROS 농도의 변화를 측정하기 위해 배지와 세포의 ROS 농도를 측정하였다. ROS 농도를 측정한 결과 무혈청 상태에서 세포내 ROS가 엄청난 양으로 증가하는 것을 알 수 있었다. 이것은 혈청이 항산화능력을 갖고 있어서가 아니라 세포가 무혈청 환경에서 극심한 스트레스상태에 놓이기 때문인 것으로 생각된다. 이렇듯 증가한 ROS가 세포의 증식이 멈추게 되는 원인 중 하나로 생각되고, 항산화제를 첨가한 경우에도 증식력이나 ROS의 농도에 큰 차이가 없었던 것으로 미루어 보아 근본적으로 혈청과 같은 강력하게 증식을 촉진하는 성분을 배지에 첨가해야 할 것으로 여겨진다. ROS 이외에 세포의 증식이 멈추는 또 다른 원인으로 세포사멸의 여부를 확인했다. 무혈청 배지에서 배양한 적응세포와 비적응 세포 모두 특별한 세포사멸의 징후가 나타나지 않았다. 또한 무혈청 배지에서 증식이 멈춘 세포를 회수해 다시 혈청배지에서 배양한 경우 곧바로 증식력이 회복되기 때문에 대규모의 세포사멸은 발생하지 않는 것으로 생각된다. 위와 같은 현상들은 모두 혈청이 없기 때문에 발생하는 것으로 혈청을 대체할 수 있는 첨가물을 배지에 더해주면 세포의 증식이 개선될 것이다. 그래서 몇 가지 첨가물을 이용해 세포의 증식력에 변화가 나타나는지 알아보았다. 첨가물을 이용한 실험에서 IGF-I의 경우 장기간 배양에서 세포의 수를 안정적으로 유지하고 계대 횟수를 증가시키는 효과를 보였다. 이는 IGF-I이 어느정도 세포의 증식을 유지시켜주는 역할을 하기 때문인 것으로 생각된다. 무혈청 배지에서 비적응 CHO 세포의 계대 배양에 한계가 있는 것은 세포주기가 멈추기 때문인 것으로 생각된다. 세포주기가 멈추는 growth factor와 같이 세포의 증식을 지속적으로 유도할 수 있는 물질이 무혈청 배지에서는 부족하기 때문인 것으로 생각되고, IGF-I과 같은 첨가물을 통해 극복할 수 있는 문제라고 여겨진다.

Keywords

References

  1. Ross, J., K. Kao, A. Albee, D. Goodnight, and M. Caple (2001), Development and Customization of Protein-Free, Animal Component-Free Media for the Enhanced Expression of Recombinant Proteins in Chinese Hamster Ovary (CHO) Cells, Life science 2, 3
  2. Lai, D. Z., S. J. Weng, L. Q. Qi, C. M. Yu, L. Fu, T. Yu, and W. Chen (2004), Construction of two robust CHO cell lines resistant to apoptosis and adapted to protein-free medium by over-expression of IgF-1/bcl-2 or bcl-2/cyclin E genes, Sheng Wu Gong Cheng Xue Bao 20(1) 66-72
  3. Shimamoto, T., N. Nishibori, M. Aosasa, H. Horiuchi, S. Furusawa, and H. Matsuda (2005), Stable production of recombinant chicken antibody in CHO-K1 cell line, Biologicals
  4. Jochems, C. E., J. B. van der Valk, F. R. Stafleu, and V. Baumans (2002), The use of fetal bovine serum : ethical or scientific problem?, Altern. Lab. Anim. 30(2) 219-227
  5. Zabal, O., A. L. Kobrak, I. A. Lager, A. A. Schudel, and E. L. Weber (2000), Contamination of bovine fetal serum with bovine viral diarrhea virus, Rev. Argent Microbiol. 31(1), 27-32
  6. Jayme, D. W. and S. R. Smith (2000), Media formulation options and manufacturing process controls to safeguard against introduction of animal origin contaminants in animal cell culture, Cytotechnology 33(1-3), 27-36 https://doi.org/10.1023/A:1008133717035
  7. 이희찬, 동물세포 배양에서의 무혈청배지, Biotechnology News 2(3), 242-251
  8. Merten, O. W. (2002), Development of serum-free media for cell growth and production of viruses/viral vaccines: safety issues of animal products used in serum-free media, Dev. Biol. (Basel) 111, 233-257
  9. Rasmussen, L. K., Yvonne Berger Larsen. and Peter Hojrup (2005), Characterization of different cell culture media for expression of recombinant antibodies in mammalian cells: Presence of contaminating bovine antibodies, Protein Expression and Purification 41, 373-377 https://doi.org/10.1016/j.pep.2005.01.011
  10. Schröder, M., K. Matischak, and P. Friedl (2004), Serum- and protein-free media formulations for the Chinese hamster ovary cell line DUKXB11, J. Biotechnology 108, 279-292 https://doi.org/10.1016/j.jbiotec.2003.12.005
  11. Kallel, H., A. Jouini, S. Majoul, and S. Rourou (2002), Evaluation of various serum and animal protein free media for the production of a veterinary rabies vaccine in BHK-21 cells, J. Biotechnology 95, 195-204 https://doi.org/10.1016/S0168-1656(02)00009-3
  12. Labitzke, R. and P. Friedl (2001), A serum-free medium formulation supporting growth of human umbilical cord vein endothelial cells in long-term cultivation, Cytotechnology 35(2), 87-92 https://doi.org/10.1023/A:1017551218007
  13. Shamsuddin M., B. Larsson, and H. Rodriguez-Martinez (1993), Culture of bovine IVM/IVF embryos up to blastocyst stage in semi-defined medium using insulin, transferrin and selenium or growth factors, Reproduction of Domestic animals 28, 209-210 https://doi.org/10.1111/j.1439-0531.1993.tb00126.x
  14. Metcalfe, H., R. P. Field, and S. J. Froud (1994), The use of 2-hydroxy-2,4,6-cycloheptarin -1-one (tropolone) as a replacement for transferrin, In Animal Cell Technology: Products of Today, Prospects for Tomorrow, R. E. Spier, J. B. Griffiths, W. Berthold, Eds., Butterworth-Heinemann, Oxford, 88-90
  15. Raghu, H. M., S. Nandi, and S. M. Reddy (2002), Effect of insulin, transferrin and selenium and epidermal growth factor on development of buffalo oocytes to the blastocyst stage in vitro I serum-free, semidefined media, Verterinary Record 151, 260-265 https://doi.org/10.1136/vr.151.9.260
  16. Andrew, C., Boquest, Billy N. Day, and Randall S. Prather (1999), Flow Cytometric cell cycle analysis of cultured porcine fetal fibroblast cells, Biology of reproduction 60, 1013-1019 https://doi.org/10.1095/biolreprod60.4.1013
  17. Mary, P., Rosser, Wei Xia, Steven Hartsell, Michael McCaman, Ying Zhu, Soujuan Wang, Susan Harvey, Peter Bringmann and Ronald R. Cobb (2005), Transient transfection of CHO-K1-S using serum-free medium in suspension: a rapid mammalian protein expression system, Protein Expression and Purification 40, 237-243 https://doi.org/10.1016/j.pep.2004.07.015
  18. Jakoby, W. B., Methods in Enzymology Volume LVIII cell culture, academic press, 248-262
  19. Yu, Y. S., X. S. Sun, H. N. Jiang, Y. Han, C. B. Zhao, and J. H. Tan (2002), Studies of the cell cycle of in vitro cultured skin fibroblasts in goats: work in progress, Theriogenology 8740, 1-13
  20. Yun, Z., M. Takagi and T. Yoshida (2001), Effect of antioxidants on the apoptosis of CHO cells and production of tissue plasminogen activator in suspension culture, J. Bioscience and Biotechnology 91(6), 581-585
  21. Sakai, K., T. Matsunaga, H. Yamaji, and H. Fukuda (1999), Effects of phospholipids on growth of chinese hamster ovary cells in serum-free media, J. Bioscience and Biotechnology 88(3), 306-309
  22. Chen, Y., S. Morimoto, S. Kitano, E. Koh, K. Fukuo, B. Jiang, S. Chen, 0. Yasuda, A. Hirotani, and T. Ogihara (1995), Lysophosphatidylcholine causes $Ca^{++}$ influx, enhanced DNA synthesis and cytotoxicity in cultured vascular smooth muscle cells, Atherosclerosis 112, 69-76 https://doi.org/10.1016/0021-9150(94)05400-D
  23. Fuchsa, B., J. Schiller, U. Wagner, H. Hantzschel, and K. Arnold (2005), The phosphatidylcholine/lysophosphatidylcholine ratio in human plasma is an indicator of the severity of rheumatoid arthritis: Investigations by 31P NMR and MALDI-TOF MS, Clinical Biochemistry
  24. Liu, Chi-hsien, I-ming Chu, and Shiaw-min Hwang (2001), Aurintricarboxylic acid exerts insulin-like growth stimulating effects on chinese hamster ovary cells under serum-free conditions, J. Bioscience and Biotechnology 91(6), 576-580
  25. Morris, A. E. and J. Schmid (2000), Effects of Insulin and LongR3 on serum-free chinese hamster ovary cell cultures expressing two recombinant proteins, Biotechnol. Prog. 16(5), 693-697 https://doi.org/10.1021/bp0000914
  26. Sunstrom, N. A., R. D. Gay, D. C. Wong, N. A. Kitchen, L. DeBoer, and P. P. Gray (2000), Insulin-like growth factor-I and transferrin mediate growth and survival of Chinese hamster ovary cells, Biotechnol. Prog. 16(5), 698-702 https://doi.org/10.1021/bp000102t
  27. Ratajczak, J., Q. Zhang, E. Pertusini, B. S. Wojczyk, M. A. Wasik, and M. Z. Ratajczak (1998), The role of insulin (INS) and insulin-like growth factor-I (IGF-I) in regulating human erythropoiesis. Studies in vitro under serum-free conditions comparison to other cytokines and growth factors, Leukemia 12(3), 371-81 https://doi.org/10.1038/sj.leu.2400927
  28. Crouse, G. F., R. N. McEwan, and M. L. Pearson (1983), Expression and amplification of engineered mouse dihydorfolate reductase minigenes, Mol. Cell. Biol. 3, 257-266 https://doi.org/10.1128/MCB.3.2.257
  29. Banerjee, D., U. K. Madhusoodanan, M. Sharanabasappa, S. Ghosh, and J. Jacob (2003), Measurement of plasma hydroperoxide concentration by FOX-1 assay in conjunction with triphenylphosphine, Clinica Chimica Acta 337, 1-2, 147-152 https://doi.org/10.1016/S0009-8981(03)00340-1
  30. Gunasekar, P. G., A. G. Kanthasamy, J. L. Borowitz, and G. E. Isom (1995), Monitoring intracellular nitric oxide formation by dichlorofluorescin, in neuronal cells, J. Neuroscience Methods 61, 21
  31. O'Brien, M. C. and W. E. Bolton (1995), Comparison of cell viability probes compatible with fixation and permeabilization for combined surface and intracellular staining in flow cytometry, Cytometry 19, 243-255 https://doi.org/10.1002/cyto.990190308
  32. Seo, S. K. (2004), Change of gene expression in CHO (chinese hamster ovary) cells cultured with serum-free media, Konkuk University