• Title/Summary/Keyword: Cellular Senescence

검색결과 179건 처리시간 0.026초

Defect of SIRT1-FoxO3a axis is associated with the production of reactive oxygen species during protein kinase CK2 downregulation-mediated cellular senescence and nematode aging

  • Ham, Hye-Jun;Park, Jeong-Woo;Bae, Young-Seuk
    • BMB Reports
    • /
    • 제52권4호
    • /
    • pp.265-270
    • /
    • 2019
  • We investigated whether SIRT1 is associated with reactive oxygen species (ROS) accumulation during CK2 downregulation-mediated senescence. SIRT1 overexpression suppressed ROS accumulation, reduced transcription of FoxO3a target genes, and nuclear export and acetylation of FoxO3a, which were induced by CK2 downregulation in HCT116 and MCF-7 cells. Conversely, overexpression of a dominant-negative mutant SIRT1 (H363Y) counteracted decreased ROS levels, increased transcriptional activity of FoxO3a, and increased nuclear import and decreased acetylation of FoxO3a, which were induced by CK2 upregulation. CK2 downregulation destabilized SIRT1 protein via an ubiquitin-proteasome pathway in human cells, whereas CK2 overexpression reduced ubiquitination of SIRT1. Finally, the SIRT1 activator resveratrol attenuated the accumulation of ROS and lipofuscin as well as lifespan shortening, and reduced expression of the DAF-16 target gene sod-3, which were induced by CK2 downregulation in nematodes. Altogether, this study demonstrates that inactivation of the SIRT1-FoxO3a axis, at least in part, is involved in ROS generation during CK2 downregulation-mediated cellular senescence and nematode aging.

The Role of Extracellular Vesicles in Senescence

  • Oh, Chaehwan;Koh, Dahyeon;Jeon, Hyeong Bin;Kim, Kyoung Mi
    • Molecules and Cells
    • /
    • 제45권9호
    • /
    • pp.603-609
    • /
    • 2022
  • Cells can communicate in a variety of ways, such as by contacting each other or by secreting certain factors. Recently, extracellular vesicles (EVs) have been proposed to be mediators of cell communication. EVs are small vesicles with a lipid bilayer membrane that are secreted by cells and contain DNA, RNAs, lipids, and proteins. These EVs are secreted from various cell types and can migrate and be internalized by recipient cells that are the same or different than those that secrete them. EVs harboring various components are involved in regulating gene expression in recipient cells. These EVs may also play important roles in the senescence of cells and the accumulation of senescent cells in the body. Studies on the function of EVs in senescent cells and the mechanisms through which nonsenescent and senescent cells communicate through EVs are being actively conducted. Here, we summarize studies suggesting that EVs secreted from senescent cells can promote the senescence of other cells and that EVs secreted from nonsenescent cells can rejuvenate senescent cells. In addition, we discuss the functional components (proteins, RNAs, and other molecules) enclosed in EVs that enter recipient cells.

Regulation of Leaf Senescence by NTL9-mediated Osmotic Stress Signaling in Arabidopsis

  • Yoon, Hye-Kyung;Kim, Sang-Gyu;Kim, Sun-Young;Park, Chung-Mo
    • Molecules and Cells
    • /
    • 제25권3호
    • /
    • pp.438-445
    • /
    • 2008
  • Leaf senescence is a highly regulated genetic process that constitutes the last stage of plant development and provides adaptive fitness by relocating metabolites from senescing leaves to reproducing seeds. Characterization of various senescence mutants, mostly in Arabidopsis, and genome-wide analyses of gene expression, have identified a wide array of regulatory components, including transcription factors and enzymes as well as signaling molecules mediating growth hormones and environmental stress responses. In this work we demonstrate that a membrane-associated NAC transcription factor, NTL9, mediates osmotic stress signaling in leaf senescence. The NTL9 gene is induced by osmotic stress. Furthermore, activation of the dormant, membrane-associated NTL9 is elevated under the same conditions. A series of senescence-associated genes (SAGs) were upregulated in transgenic plants overexpressing an activated form of NTL9, and some of them were slightly but reproducibly downregulated in a T-DNA insertional NTL9 knockout mutant. These observations indicate that NTL9 mediates osmotic stress responses that affect leaf senescence, providing a genetic link between intrinsic genetic programs and external signals in the control of leaf senescence.

Metabolic features and regulation in cell senescence

  • Kwon, So Mee;Hong, Sun Mi;Lee, Young-Kyoung;Min, Seongki;Yoon, Gyesoon
    • BMB Reports
    • /
    • 제52권1호
    • /
    • pp.5-12
    • /
    • 2019
  • Organismal aging is accompanied by a host of progressive metabolic alterations and an accumulation of senescent cells, along with functional decline and the appearance of multiple diseases. This implies that the metabolic features of cell senescence may contribute to the organism's metabolic changes and be closely linked to age-associated diseases, especially metabolic syndromes. However, there is no clear understanding of senescent metabolic characteristics. Here, we review key metabolic features and regulators of cellular senescence, focusing on mitochondrial dysfunction and anabolic deregulation, and their link to other senescence phenotypes and aging. We further discuss the mechanistic involvement of the metabolic regulators mTOR, AMPK, and GSK3, proposing them as key metabolic switches for modulating senescence.

Ginsenoside Rb2 suppresses cellular senescence of human dermal fibroblasts by inducing autophagy

  • Kyeong Eun Yang;Soo-Bin Nam;Minsu Jang;Junsoo Park;Ga-Eun Lee;Yong-Yeon Cho;Byeong-Churl Jang;Cheol-Jung Lee;Jong-Soon Choi
    • Journal of Ginseng Research
    • /
    • 제47권2호
    • /
    • pp.337-346
    • /
    • 2023
  • Background: Ginsenoside Rb2, a major active component of Panax ginseng, has various physiological activities, including anticancer and anti-inflammatory effects. However, the mechanisms underlying the rejuvenation effect of Rb2 in human skin cells have not been elucidated. Methods: We performed a senescence-associated β-galactosidase staining assay to confirm cellular senescence in human dermal fibroblasts (HDFs). The regulatory effects of Rb2 on autophagy were evaluated by analyzing the expression of autophagy marker proteins, such as microtubule-associated protein 1A/1B-light chain (LC) 3 and p62, using immunoblotting. Autophagosome and autolysosome formation was monitored using transmission electron microscopy. Autophagic flux was analyzed using tandem-labeled GFP-RFP-LC3, and lysosomal function was assessed with Lysotracker. We performed RNA sequencing to identify potential target genes related to HDF rejuvenation mediated by Rb2. To verify the functions of the target genes, we silenced them using shRNAs. Results: Rb2 decreased β-galactosidase activity and altered the expression of cell cycle regulatory proteins in senescent HDFs. Rb2 markedly induced the conversion of LC3-I to LC3-II and LC3 puncta. Moreover, Rb2 increased lysosomal function and red puncta in tandem-labeled GFP-RFP-LC3, which indicate that Rb2 promoted autophagic flux. RNA sequencing data showed that the expression of DNA damage-regulated autophagy modulator 2 (DRAM2) was induced by Rb2. In autophagy signaling, Rb2 activated the AMPK-ULK1 pathway and inactivated mTOR. DRAM2 knockdown inhibited autophagy and Rb2-restored cellular senescence. Conclusion: Rb2 reverses cellular senescence by activating autophagy via the AMPK-mTOR pathway and induction of DRAM2, suggesting that Rb2 might have potential value as an antiaging agent.

Implications of telomerase reverse transcriptase in tumor metastasis

  • Zou, Yongkang;Cong, Yu-sheng;Zhou, Junzhi
    • BMB Reports
    • /
    • 제53권9호
    • /
    • pp.458-465
    • /
    • 2020
  • Metastasis is the main culprit of the great majority of cancerrelated deaths. However, the complicated process of the invasion-metastasis cascade remains the least understood aspect of cancer biology. Telomerase plays a pivotal role in bypassing cellular senescence and sustaining the cancer progression by maintaining telomere homeostasis and genomic integrity. Telomerase reverse transcriptase (TERT) exerts a series of fundamental functions that are independent of its enzymatic cellular activity, including proliferation, inflammation, epithelia-mesenchymal transition (EMT), angiogenesis, DNA repair, and gene expression. Accumulating evidence indicates that TERT may facilitate most steps of the invasion-metastasis cascade. In this review, we summarize important advances that have revealed some of the mechanisms by which TERT facilitates tumor metastasis, providing an update on the non-canonical functions of telomerase beyond telomere maintaining.

Evaluation of Senescence Induced Prematurely by Stress. Application for cosmetic active ingredients

  • Morvan, Pierre-Yves;Romuald Vallee
    • 대한화장품학회:학술대회논문집
    • /
    • 대한화장품학회 2003년도 IFSCC Conference Proceeding Book I
    • /
    • pp.285-290
    • /
    • 2003
  • Living cells are continuously subject to all sorts of stress such as ultraviolet rays on skin cells. Tests made in various laboratories show that when young fibroblasts (Le. at the beginning of their proliferate life) were repeatedly put under stress at subletal doses, they acquired a phenotype similar to Senescence Induced Prematurely by Stress (SIPS). The work presented hereafter was made on a new model of senescence induced prematurely by stress from ultraviolet Brays (UVB). The human fibroblast model was put under repeated UVB stress, causing SIPS. Several ageing biomarkers were used in order to characterise the cells that underwent stress:. an increase in the proportion of positive cells with senescence associated $\beta$-galactosidase activity (SA $\beta$-gal) measured by a specific coloration,. the proportion in the different morphological stages that fibroblasts undergo during culture visualised by microscopic observation,. the expression of genes known for overexpressing during senescence, particularly fibronectin and apolipoprotein J, measured by Real Time-PCR,. the common deletion of 4,977 bp in mitochondrial DNA, evaluated by nested PCR. Studying the variation of these 4 biomarkers, we have evaluated the protective effect of a Laminaria digitata extract (LDE) that can be used as a natural active ingredient for anti-ageing cosmetics.

  • PDF

Alleviation of Senescence via ATM Inhibition in Accelerated Aging Models

  • Kuk, Myeong Uk;Kim, Jae Won;Lee, Young-Sam;Cho, Kyung A;Park, Joon Tae;Park, Sang Chul
    • Molecules and Cells
    • /
    • 제42권3호
    • /
    • pp.210-217
    • /
    • 2019
  • The maintenance of mitochondrial function is closely linked to the control of senescence. In our previous study, we uncovered a novel mechanism in which senescence amelioration in normal aging cells is mediated by the recovered mitochondrial function upon Ataxia telangiectasia mutated (ATM) inhibition. However, it remains elusive whether this mechanism is also applicable to senescence amelioration in accelerated aging cells. In this study, we examined the role of ATM inhibition on mitochondrial function in Hutchinson-Gilford progeria syndrome (HGPS) and Werner syndrome (WS) cells. We found that ATM inhibition induced mitochondrial functional recovery accompanied by metabolic reprogramming, which has been known to be a prerequisite for senescence alleviation in normal aging cells. Indeed, the induced mitochondrial metabolic reprogramming was coupled with senescence amelioration in accelerated aging cells. Furthermore, the therapeutic effect via ATM inhibition was observed in HGPS as evidenced by reduced progerin accumulation with concomitant decrease of abnormal nuclear morphology. Taken together, our data indicate that the mitochondrial functional recovery by ATM inhibition might represent a promising strategy to ameliorate the accelerated aging phenotypes and to treat age-related disease.

Gold and silver plasmonic nanoprobes trace the positions of histone codes

  • Choi, Inhee;Song, Jihwan;Park, Hyunsung
    • BMB Reports
    • /
    • 제55권3호
    • /
    • pp.111-112
    • /
    • 2022
  • We visualized the distribution of heterochromatin in a single nucleus using plasmonic nanoparticle-conjugated H3K9me3 and H3K27me3 antibodies. Due to distance-dependent plasmonic coupling effects between nanoprobes, their scattering spectra shift to longer wavelengths as the distance between heterochromatin histone markers reduced during oncogene-induced senescence (OIS). These observations were supported by simulating scattering profiles based on considerations of particle numbers, interparticle distances, and the spatial arrangements of plasmonic nanoprobes. Using this plasmon-based colourimetric imaging, we estimated changes in distances between H3K9me3 and H3K27me3 during the formation of senescence-associated heterochromatin foci in OIS cells. We anticipate that the devised analytical technique combined with high-spatial imaging and spectral simulation will eventually lead to a new means of diagnosing and monitoring disease progression and cellular senescence.